基于插值的路径跟踪误差分析

Jennifer Chandler, R. Bujack, K. Joy
{"title":"基于插值的路径跟踪误差分析","authors":"Jennifer Chandler, R. Bujack, K. Joy","doi":"10.2312/eurovisshort.20161152","DOIUrl":null,"url":null,"abstract":"Chandler et al. [COJ15] presented interpolation-based pathline tracing as an alternative to numerical integration for advecting tracers in particle-based flow fields and showed that their method has lower error than a numerical integration-based method for particle tracing. We seek to understand the sources of the error in interpolation-based pathline tracing. We present a formal analysis of the theoretical bound on the error when advecting pathlines using this method. We characterize the error experimentally using characteristics of the flow field such as neighborhood change, flow divergence, and trajectory length. Understanding the sources of error in an advection method is important to know where there may be uncertainty in the resulting analysis. We find that for interpolation-based pathline tracing the error is closely related to the divergence in the flow field.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of Error in Interpolation-Based Pathline Tracing\",\"authors\":\"Jennifer Chandler, R. Bujack, K. Joy\",\"doi\":\"10.2312/eurovisshort.20161152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chandler et al. [COJ15] presented interpolation-based pathline tracing as an alternative to numerical integration for advecting tracers in particle-based flow fields and showed that their method has lower error than a numerical integration-based method for particle tracing. We seek to understand the sources of the error in interpolation-based pathline tracing. We present a formal analysis of the theoretical bound on the error when advecting pathlines using this method. We characterize the error experimentally using characteristics of the flow field such as neighborhood change, flow divergence, and trajectory length. Understanding the sources of error in an advection method is important to know where there may be uncertainty in the resulting analysis. We find that for interpolation-based pathline tracing the error is closely related to the divergence in the flow field.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/eurovisshort.20161152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/eurovisshort.20161152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

Chandler等人[COJ15]提出了基于插值的路径跟踪方法,作为数值积分方法在基于颗粒的流场中对平流示踪剂的替代方法,并表明他们的方法比基于数值积分的粒子跟踪方法具有更低的误差。我们试图了解基于插值的路径跟踪中的错误来源。我们给出了用这种方法对平流路径误差的理论界的形式化分析。我们利用流场的邻域变化、流散度和轨迹长度等特性对误差进行了实验表征。了解平流法的误差来源对于了解结果分析中可能存在的不确定性是很重要的。我们发现,对于基于插值的路径跟踪,误差与流场的散度密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Error in Interpolation-Based Pathline Tracing
Chandler et al. [COJ15] presented interpolation-based pathline tracing as an alternative to numerical integration for advecting tracers in particle-based flow fields and showed that their method has lower error than a numerical integration-based method for particle tracing. We seek to understand the sources of the error in interpolation-based pathline tracing. We present a formal analysis of the theoretical bound on the error when advecting pathlines using this method. We characterize the error experimentally using characteristics of the flow field such as neighborhood change, flow divergence, and trajectory length. Understanding the sources of error in an advection method is important to know where there may be uncertainty in the resulting analysis. We find that for interpolation-based pathline tracing the error is closely related to the divergence in the flow field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信