用递归神经网络通过极点放置来综合线性控制系统

Jun Wang, Guanghua Wu
{"title":"用递归神经网络通过极点放置来综合线性控制系统","authors":"Jun Wang, Guanghua Wu","doi":"10.1109/TAI.1994.346472","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks are proposed for synthesizing linear control systems through pole placement. The proposed neural networks approach uses two coupled recurrent neural networks for computing feedback gain matrix. Each neural network consists of two bidirectionally connected layers and each layer consists of an array of neurons. The proposed recurrent neural networks are shown to be capable of synthesizing linear control systems in real time. The operating characteristics of the recurrent neural networks and closed-loop systems are demonstrated by use of two illustrative examples.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recurrent neural networks for synthesizing linear control systems via pole placement\",\"authors\":\"Jun Wang, Guanghua Wu\",\"doi\":\"10.1109/TAI.1994.346472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks are proposed for synthesizing linear control systems through pole placement. The proposed neural networks approach uses two coupled recurrent neural networks for computing feedback gain matrix. Each neural network consists of two bidirectionally connected layers and each layer consists of an array of neurons. The proposed recurrent neural networks are shown to be capable of synthesizing linear control systems in real time. The operating characteristics of the recurrent neural networks and closed-loop systems are demonstrated by use of two illustrative examples.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种递归神经网络,通过极点配置来综合线性控制系统。提出的神经网络方法采用两个耦合的递归神经网络计算反馈增益矩阵。每个神经网络由两个双向连接的层组成,每层由一组神经元组成。所提出的递归神经网络具有实时合成线性控制系统的能力。通过两个实例说明了递归神经网络和闭环系统的工作特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent neural networks for synthesizing linear control systems via pole placement
Recurrent neural networks are proposed for synthesizing linear control systems through pole placement. The proposed neural networks approach uses two coupled recurrent neural networks for computing feedback gain matrix. Each neural network consists of two bidirectionally connected layers and each layer consists of an array of neurons. The proposed recurrent neural networks are shown to be capable of synthesizing linear control systems in real time. The operating characteristics of the recurrent neural networks and closed-loop systems are demonstrated by use of two illustrative examples.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信