微通道超声振荡两相流

Zhaokuan Lu, Éric Dupuis, V. Patel, A. Momen, S. Shahab
{"title":"微通道超声振荡两相流","authors":"Zhaokuan Lu, Éric Dupuis, V. Patel, A. Momen, S. Shahab","doi":"10.1063/5.0039971","DOIUrl":null,"url":null,"abstract":"Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric drying device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${\\omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.","PeriodicalId":328276,"journal":{"name":"arXiv: Fluid Dynamics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ultrasonic oscillatory two-phase flow in microchannels\",\"authors\":\"Zhaokuan Lu, Éric Dupuis, V. Patel, A. Momen, S. Shahab\",\"doi\":\"10.1063/5.0039971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric drying device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${\\\\omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.\",\"PeriodicalId\":328276,\"journal\":{\"name\":\"arXiv: Fluid Dynamics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0039971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0039971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

实验和数值研究进行了超声振荡两相流在微通道中的输运行为的评估。这项工作的灵感来自于在一种创新的超声波织物干燥装置中观察到的流动,该装置使用带有微通道的压电双晶片换能器,其中水-空气两相流通过谐波振荡微通道传输。在振动循环过程中,由于水与空气的相互作用,流动表现出高度不稳定的行为,这与微通道中的稳定流动有很大的不同。将湍流reynolds -average Navier-Stokes (RANS) k-${\omega}$模型与相场法相结合,实现了计算流体动力学(CFD)建模,求解了两相流的动力学问题。通过实验对数值结果进行了定性验证。通过参数化研究,我们专门研究了振动条件(即频率和振幅)、微通道锥度角和壁面接触角(即润湿性)对微通道流速的影响。研究结果将促进振荡或一般非定常微通道两相流可能存在的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic oscillatory two-phase flow in microchannels
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric drying device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${\omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信