基于机器学习的自行车动力学参数预测

B. Li
{"title":"基于机器学习的自行车动力学参数预测","authors":"B. Li","doi":"10.1109/ISCEIC53685.2021.00050","DOIUrl":null,"url":null,"abstract":"There are many control methods for the stable motion of a bicycle, and some scholars have verified that the stable motion of the bicycle can be achieved through the proportional control of the inclination of the body. This paper combines machine learning with bicycle dynamics parameter prediction, and uses neural network to fit the relationship between the dynamic parameters at time t and t+Δt, and predict the inclination of the body at time t+Δt. The fitting result proves that the neural network method can effectively fit the law, and the prediction effect is better.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of bicycle dynamics parameters based on machine learning\",\"authors\":\"B. Li\",\"doi\":\"10.1109/ISCEIC53685.2021.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many control methods for the stable motion of a bicycle, and some scholars have verified that the stable motion of the bicycle can be achieved through the proportional control of the inclination of the body. This paper combines machine learning with bicycle dynamics parameter prediction, and uses neural network to fit the relationship between the dynamic parameters at time t and t+Δt, and predict the inclination of the body at time t+Δt. The fitting result proves that the neural network method can effectively fit the law, and the prediction effect is better.\",\"PeriodicalId\":342968,\"journal\":{\"name\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCEIC53685.2021.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自行车稳定运动的控制方法有很多种,有学者已经验证,通过对车身倾斜度的比例控制可以实现自行车的稳定运动。本文将机器学习与自行车动力学参数预测相结合,利用神经网络拟合t时刻与t+Δt时刻的动力学参数关系,预测t+Δt时刻车身的倾斜度。拟合结果证明,神经网络方法能有效拟合规律,预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of bicycle dynamics parameters based on machine learning
There are many control methods for the stable motion of a bicycle, and some scholars have verified that the stable motion of the bicycle can be achieved through the proportional control of the inclination of the body. This paper combines machine learning with bicycle dynamics parameter prediction, and uses neural network to fit the relationship between the dynamic parameters at time t and t+Δt, and predict the inclination of the body at time t+Δt. The fitting result proves that the neural network method can effectively fit the law, and the prediction effect is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信