J. Bi, Yongze Lin, Quanxi Dong, Haitao Yuan, Mengchu Zhou
{"title":"基于改进注意力的LSTM多步水环境溶解氧预测","authors":"J. Bi, Yongze Lin, Quanxi Dong, Haitao Yuan, Mengchu Zhou","doi":"10.1109/ICNSC48988.2020.9238097","DOIUrl":null,"url":null,"abstract":"The prediction of accurate water quality has great significance to the sustainable management of water resources and pollution prevention. Due to the complexity of water environment, it is difficult to do so. Traditional prediction methods are mainly linear methods. Their prediction accuracy is limited since they fail to reflect nonlinear characteristics in water quality data. To achieve much higher accuracy, this work proposes to combines a Savitzky-Golay filter with Attention-based Long Short-Term Memory to perform a multi-step prediction of water quality. The proposed model uses a Savitzky-Golay filter for smoothing sequences to reduce noise interference. The adoption of an attention mechanism can extract effective information from complex, long, and temporal dependence. Experimental results demonstrate that the proposed method outperforms other state-of-the-art peers.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An Improved Attention-based LSTM for Multi-Step Dissolved Oxygen Prediction in Water Environment\",\"authors\":\"J. Bi, Yongze Lin, Quanxi Dong, Haitao Yuan, Mengchu Zhou\",\"doi\":\"10.1109/ICNSC48988.2020.9238097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of accurate water quality has great significance to the sustainable management of water resources and pollution prevention. Due to the complexity of water environment, it is difficult to do so. Traditional prediction methods are mainly linear methods. Their prediction accuracy is limited since they fail to reflect nonlinear characteristics in water quality data. To achieve much higher accuracy, this work proposes to combines a Savitzky-Golay filter with Attention-based Long Short-Term Memory to perform a multi-step prediction of water quality. The proposed model uses a Savitzky-Golay filter for smoothing sequences to reduce noise interference. The adoption of an attention mechanism can extract effective information from complex, long, and temporal dependence. Experimental results demonstrate that the proposed method outperforms other state-of-the-art peers.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Attention-based LSTM for Multi-Step Dissolved Oxygen Prediction in Water Environment
The prediction of accurate water quality has great significance to the sustainable management of water resources and pollution prevention. Due to the complexity of water environment, it is difficult to do so. Traditional prediction methods are mainly linear methods. Their prediction accuracy is limited since they fail to reflect nonlinear characteristics in water quality data. To achieve much higher accuracy, this work proposes to combines a Savitzky-Golay filter with Attention-based Long Short-Term Memory to perform a multi-step prediction of water quality. The proposed model uses a Savitzky-Golay filter for smoothing sequences to reduce noise interference. The adoption of an attention mechanism can extract effective information from complex, long, and temporal dependence. Experimental results demonstrate that the proposed method outperforms other state-of-the-art peers.