向量空间

Adel Boules
{"title":"向量空间","authors":"Adel Boules","doi":"10.1093/oso/9780198868781.003.0003","DOIUrl":null,"url":null,"abstract":"The first three sections of this chapter provide a thorough presentation of the concepts of basis and dimension. The approach is unified in the sense that it does not treat finite and infinite-dimensional spaces separately. Important concepts such as algebraic complements, quotient spaces, direct sums, projections, linear functionals, and invariant subspaces make their first debut in section 3.4. Section 3.5 is a brief summary of matrix representations and diagonalization. Then the chapter introduces normed linear spaces followed by an extensive study of inner product spaces. The presentation of inner product spaces in this section and in section 4.10 is not limited to finite-dimensional spaces but rather to the properties of inner products that do not require completeness. The chapter concludes with the finite-dimensional spectral theory.","PeriodicalId":182769,"journal":{"name":"Fundamentals of Mathematical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector Spaces\",\"authors\":\"Adel Boules\",\"doi\":\"10.1093/oso/9780198868781.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first three sections of this chapter provide a thorough presentation of the concepts of basis and dimension. The approach is unified in the sense that it does not treat finite and infinite-dimensional spaces separately. Important concepts such as algebraic complements, quotient spaces, direct sums, projections, linear functionals, and invariant subspaces make their first debut in section 3.4. Section 3.5 is a brief summary of matrix representations and diagonalization. Then the chapter introduces normed linear spaces followed by an extensive study of inner product spaces. The presentation of inner product spaces in this section and in section 4.10 is not limited to finite-dimensional spaces but rather to the properties of inner products that do not require completeness. The chapter concludes with the finite-dimensional spectral theory.\",\"PeriodicalId\":182769,\"journal\":{\"name\":\"Fundamentals of Mathematical Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198868781.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198868781.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章的前三节全面介绍了基和维的概念。该方法是统一的,因为它不分别处理有限维和无限维空间。一些重要的概念,如代数补、商空间、直接和、投影、线性泛函和不变子空间,在3.4节中首次出现。第3.5节是矩阵表示和对角化的简要总结。然后介绍了赋范线性空间,并对内积空间进行了广泛的研究。本节和4.10节中对内积空间的描述并不局限于有限维空间,而是局限于不需要完备性的内积的性质。本章以有限维谱理论作结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector Spaces
The first three sections of this chapter provide a thorough presentation of the concepts of basis and dimension. The approach is unified in the sense that it does not treat finite and infinite-dimensional spaces separately. Important concepts such as algebraic complements, quotient spaces, direct sums, projections, linear functionals, and invariant subspaces make their first debut in section 3.4. Section 3.5 is a brief summary of matrix representations and diagonalization. Then the chapter introduces normed linear spaces followed by an extensive study of inner product spaces. The presentation of inner product spaces in this section and in section 4.10 is not limited to finite-dimensional spaces but rather to the properties of inner products that do not require completeness. The chapter concludes with the finite-dimensional spectral theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信