{"title":"合成合流标准","authors":"Kiraku Shintani, Nao Hirokawa","doi":"10.4230/LIPIcs.FSCD.2022.28","DOIUrl":null,"url":null,"abstract":"We show how confluence criteria based on decreasing diagrams are generalized to ones composable with other criteria. For demonstration of the method, the confluence criteria of orthogonality, rule labeling, and critical pair systems for term rewriting are recast into composable forms. We also show how such a criterion can be used for a reduction method that removes rewrite rules unnecessary for confluence analysis. In addition to them, we prove that Toyama's parallel closedness result based on parallel critical pairs subsumes his almost parallel closedness theorem.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compositional Confluence Criteria\",\"authors\":\"Kiraku Shintani, Nao Hirokawa\",\"doi\":\"10.4230/LIPIcs.FSCD.2022.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how confluence criteria based on decreasing diagrams are generalized to ones composable with other criteria. For demonstration of the method, the confluence criteria of orthogonality, rule labeling, and critical pair systems for term rewriting are recast into composable forms. We also show how such a criterion can be used for a reduction method that removes rewrite rules unnecessary for confluence analysis. In addition to them, we prove that Toyama's parallel closedness result based on parallel critical pairs subsumes his almost parallel closedness theorem.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2022.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2022.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show how confluence criteria based on decreasing diagrams are generalized to ones composable with other criteria. For demonstration of the method, the confluence criteria of orthogonality, rule labeling, and critical pair systems for term rewriting are recast into composable forms. We also show how such a criterion can be used for a reduction method that removes rewrite rules unnecessary for confluence analysis. In addition to them, we prove that Toyama's parallel closedness result based on parallel critical pairs subsumes his almost parallel closedness theorem.