J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner
{"title":"解决:从高级合成生成高性能排序体系结构","authors":"J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner","doi":"10.1145/2847263.2847268","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Resolve: Generation of High-Performance Sorting Architectures from High-Level Synthesis\",\"authors\":\"J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner\",\"doi\":\"10.1145/2847263.2847268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.\",\"PeriodicalId\":438572,\"journal\":{\"name\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2847263.2847268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resolve: Generation of High-Performance Sorting Architectures from High-Level Synthesis
Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.