解决:从高级合成生成高性能排序体系结构

J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner
{"title":"解决:从高级合成生成高性能排序体系结构","authors":"J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner","doi":"10.1145/2847263.2847268","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Resolve: Generation of High-Performance Sorting Architectures from High-Level Synthesis\",\"authors\":\"J. Matai, D. Richmond, Dajung Lee, Z. Blair, Qiongzhi Wu, Amin Abazari, R. Kastner\",\"doi\":\"10.1145/2847263.2847268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.\",\"PeriodicalId\":438572,\"journal\":{\"name\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2847263.2847268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

排序算法的现场可编程门阵列(FPGA)实现已被证明是高效的,但现有的实现缺乏可移植性和可维护性,因为它们是用低级硬件描述语言编写的,需要大量的领域专业知识来开发和维护。为了解决这个问题,我们开发了一个框架,为不同的需求(速度、面积、功率等)生成排序架构。我们的框架提供了10个高度优化的基本排序架构,可以轻松地组合基本架构来生成混合排序架构,使非硬件专家能够快速设计高效的硬件排序器,并促进定制异构FPGA/CPU排序系统的开发。实验结果表明,对于小于16K元素的数组,我们的框架生成的体系结构至少与现有的RTL实现一样好,并且与RTL实现对更大的数组进行排序相当。我们在异构FPGA/CPU系统上使用我们的大型阵列(16K-130K)排序架构演示了端到端系统的原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolve: Generation of High-Performance Sorting Architectures from High-Level Synthesis
Field Programmable Gate Array (FPGA) implementations of sorting algorithms have proven to be efficient, but existing implementations lack portability and maintainability because they are written in low-level hardware description languages that require substantial domain expertise to develop and maintain. To address this problem, we develop a framework that generates sorting architectures for different requirements (speed, area, power, etc.). Our framework provides ten highly optimized basic sorting architectures, easily composes basic architectures to generate hybrid sorting architectures, enables non-hardware experts to quickly design efficient hardware sorters, and facilitates the development of customized heterogeneous FPGA/CPU sorting systems. Experimental results show that our framework generates architectures that perform at least as well as existing RTL implementations for arrays smaller than 16K elements, and are comparable to RTL implementations for sorting larger arrays. We demonstrate a prototype of an end-to-end system using our sorting architectures for large arrays (16K-130K) on a heterogeneous FPGA/CPU system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信