基于ACO-BP神经网络的计算网格任务调度

K. R. R. Babu, P. Mathiyalagan, S. Sivanandam
{"title":"基于ACO-BP神经网络的计算网格任务调度","authors":"K. R. R. Babu, P. Mathiyalagan, S. Sivanandam","doi":"10.1145/2345396.2345467","DOIUrl":null,"url":null,"abstract":"Task Scheduling in computational grid is a complex optimization problem which may require consideration of different criteria such as waiting time, makespan time, throughput, communication time, and dispatching time. For optimal scheduling, the scheduler must know about the above factors and status of the resources in the grid and include these dynamic changes in the availability of resources while scheduling the tasks. For all situations, classical algorithms cannot adapt themselves with situations. The heuristic algorithms are proved to be more efficient than classical scheduling algorithms. This paper propose a method that tunes the Back Propagation Neural networks (BPN) using the capability of ACO algorithm to produce an optimal solution. Proposed method reduces the computation time by removing the unnecessary links in the neural network structure. The algorithm increases the efficiency the scheduling process and allocates the tasks to best available resources in the computation grid.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Task scheduling using ACO-BP neural network in computational grids\",\"authors\":\"K. R. R. Babu, P. Mathiyalagan, S. Sivanandam\",\"doi\":\"10.1145/2345396.2345467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task Scheduling in computational grid is a complex optimization problem which may require consideration of different criteria such as waiting time, makespan time, throughput, communication time, and dispatching time. For optimal scheduling, the scheduler must know about the above factors and status of the resources in the grid and include these dynamic changes in the availability of resources while scheduling the tasks. For all situations, classical algorithms cannot adapt themselves with situations. The heuristic algorithms are proved to be more efficient than classical scheduling algorithms. This paper propose a method that tunes the Back Propagation Neural networks (BPN) using the capability of ACO algorithm to produce an optimal solution. Proposed method reduces the computation time by removing the unnecessary links in the neural network structure. The algorithm increases the efficiency the scheduling process and allocates the tasks to best available resources in the computation grid.\",\"PeriodicalId\":290400,\"journal\":{\"name\":\"International Conference on Advances in Computing, Communications and Informatics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Computing, Communications and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2345396.2345467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算网格中的任务调度是一个复杂的优化问题,它可能需要考虑等待时间、最大跨度时间、吞吐量、通信时间和调度时间等不同的标准。为了实现最优调度,调度程序必须了解网格中资源的上述因素和状态,并在调度任务时将资源可用性中的这些动态变化包括在内。对于所有情况,经典算法都不能适应各种情况。结果表明,启发式调度算法比传统调度算法更有效。本文提出了一种利用蚁群算法的能力对反向传播神经网络(BPN)进行调谐以产生最优解的方法。该方法通过去除神经网络结构中不必要的链路,减少了计算时间。该算法提高了调度过程的效率,并将任务分配给计算网格中最优的可用资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task scheduling using ACO-BP neural network in computational grids
Task Scheduling in computational grid is a complex optimization problem which may require consideration of different criteria such as waiting time, makespan time, throughput, communication time, and dispatching time. For optimal scheduling, the scheduler must know about the above factors and status of the resources in the grid and include these dynamic changes in the availability of resources while scheduling the tasks. For all situations, classical algorithms cannot adapt themselves with situations. The heuristic algorithms are proved to be more efficient than classical scheduling algorithms. This paper propose a method that tunes the Back Propagation Neural networks (BPN) using the capability of ACO algorithm to produce an optimal solution. Proposed method reduces the computation time by removing the unnecessary links in the neural network structure. The algorithm increases the efficiency the scheduling process and allocates the tasks to best available resources in the computation grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信