{"title":"自组装单层作为钙钛矿太阳能电池孔选择触点的优点和挑战","authors":"Songran Wang, Huanxin Guo, Yongzhen Wu","doi":"10.1088/2752-5724/acbb5a","DOIUrl":null,"url":null,"abstract":"Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells\",\"authors\":\"Songran Wang, Huanxin Guo, Yongzhen Wu\",\"doi\":\"10.1088/2752-5724/acbb5a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.\",\"PeriodicalId\":221966,\"journal\":{\"name\":\"Materials Futures\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Futures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5724/acbb5a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/acbb5a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells
Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.