一种有效的基于ward方法的中文短信文本聚类算法

Lingling Yuan
{"title":"一种有效的基于ward方法的中文短信文本聚类算法","authors":"Lingling Yuan","doi":"10.1109/AIMSEC.2011.6010901","DOIUrl":null,"url":null,"abstract":"Short message texts have taken an important role in modern society in China. Because of the problems on word segmentation and term extraction in Chinese text classification along with the characters of short message text themselves, it is necessary to explore some new approach to classify short message. In this article, a new methodology named DBS is proposed to classify short message texts based on the ward's method. Experiments show that it's an effective algorithm in Chinese short message texts classification.","PeriodicalId":214011,"journal":{"name":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An effective Chinese short message texts clustering algorithm based on the ward's method\",\"authors\":\"Lingling Yuan\",\"doi\":\"10.1109/AIMSEC.2011.6010901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short message texts have taken an important role in modern society in China. Because of the problems on word segmentation and term extraction in Chinese text classification along with the characters of short message text themselves, it is necessary to explore some new approach to classify short message. In this article, a new methodology named DBS is proposed to classify short message texts based on the ward's method. Experiments show that it's an effective algorithm in Chinese short message texts classification.\",\"PeriodicalId\":214011,\"journal\":{\"name\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMSEC.2011.6010901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMSEC.2011.6010901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

短信在中国现代社会中扮演着重要的角色。由于短信文本本身的特点以及中文文本分类中存在的分词和词提取问题,有必要探索新的短信分类方法。本文在病房分类方法的基础上,提出了一种新的短信分类方法DBS。实验表明,该算法是一种有效的中文短信文本分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective Chinese short message texts clustering algorithm based on the ward's method
Short message texts have taken an important role in modern society in China. Because of the problems on word segmentation and term extraction in Chinese text classification along with the characters of short message text themselves, it is necessary to explore some new approach to classify short message. In this article, a new methodology named DBS is proposed to classify short message texts based on the ward's method. Experiments show that it's an effective algorithm in Chinese short message texts classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信