结合软硬件技术设计可靠的IP处理器

M. Rebaudengo, L. Sterpone, M. Violante, C. Bolchini, A. Miele, D. Sciuto
{"title":"结合软硬件技术设计可靠的IP处理器","authors":"M. Rebaudengo, L. Sterpone, M. Violante, C. Bolchini, A. Miele, D. Sciuto","doi":"10.1109/DFT.2006.18","DOIUrl":null,"url":null,"abstract":"In the recent years both software and hardware techniques have been adopted to carry out reliable designs, aimed at autonomously detecting the occurrence of faults, to allow discarding erroneous data and possibly performing the recovery of the system. The aim of this paper is the introduction of a combined use of software and hardware approaches to achieve complete fault coverage in generic IP processors, with respect to SEU faults. Software techniques are preferably adopted to reduce the necessity and costs of modifying the processor architecture; since a complete fault coverage cannot be achieved, partial hardware redundancy techniques are then introduced to deal with the remaining, not covered, faults. The paper presents the methodological approach adopted to achieve the complete fault coverage, the proposed resulting architecture, and the experimental results gathered from the fault injection analysis campaign","PeriodicalId":113870,"journal":{"name":"2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combined software and hardware techniques for the design of reliable IP processors\",\"authors\":\"M. Rebaudengo, L. Sterpone, M. Violante, C. Bolchini, A. Miele, D. Sciuto\",\"doi\":\"10.1109/DFT.2006.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years both software and hardware techniques have been adopted to carry out reliable designs, aimed at autonomously detecting the occurrence of faults, to allow discarding erroneous data and possibly performing the recovery of the system. The aim of this paper is the introduction of a combined use of software and hardware approaches to achieve complete fault coverage in generic IP processors, with respect to SEU faults. Software techniques are preferably adopted to reduce the necessity and costs of modifying the processor architecture; since a complete fault coverage cannot be achieved, partial hardware redundancy techniques are then introduced to deal with the remaining, not covered, faults. The paper presents the methodological approach adopted to achieve the complete fault coverage, the proposed resulting architecture, and the experimental results gathered from the fault injection analysis campaign\",\"PeriodicalId\":113870,\"journal\":{\"name\":\"2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2006.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2006.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,采用软件和硬件技术进行可靠的设计,旨在自主检测故障的发生,允许丢弃错误数据并可能执行系统恢复。本文的目的是介绍一种结合使用软件和硬件的方法来实现通用IP处理器的完整故障覆盖,涉及到SEU故障。优选采用软件技术来减少修改处理器架构的必要性和成本;由于无法实现完全的故障覆盖,因此引入部分硬件冗余技术来处理剩余的未覆盖的故障。本文介绍了实现完全故障覆盖的方法方法,提出的结果体系结构,以及从故障注入分析活动中收集的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined software and hardware techniques for the design of reliable IP processors
In the recent years both software and hardware techniques have been adopted to carry out reliable designs, aimed at autonomously detecting the occurrence of faults, to allow discarding erroneous data and possibly performing the recovery of the system. The aim of this paper is the introduction of a combined use of software and hardware approaches to achieve complete fault coverage in generic IP processors, with respect to SEU faults. Software techniques are preferably adopted to reduce the necessity and costs of modifying the processor architecture; since a complete fault coverage cannot be achieved, partial hardware redundancy techniques are then introduced to deal with the remaining, not covered, faults. The paper presents the methodological approach adopted to achieve the complete fault coverage, the proposed resulting architecture, and the experimental results gathered from the fault injection analysis campaign
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信