非接触式呼吸监测中的深度传感器降噪

Kaveh Bakhtiyari, J. Ziegler, H. Husain
{"title":"非接触式呼吸监测中的深度传感器降噪","authors":"Kaveh Bakhtiyari, J. Ziegler, H. Husain","doi":"10.1145/3154862.3154896","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel reliable solution, named KinRes, to extract contactless respiratory signal via an IR-3D Depth sensor (Microsoft Kinect 2) on human subjects interacting with a computer. The depth sensor is very sensitive to the minor changes so that the body movements impose noise in the depth values. Previous studies on contactless respiratory concentrated solely on the still laid subjects on a surface to minimize the possible artifacts. To overcome these limitations, we low-pass filter the extracted signal. Then, a greedy self-correction algorithm is developed to correct the false detected peaks & troughs. The processed signal is validated with a simultaneous signal from a respiratory belt. This framework improved the accuracy of the signal by 24% for the subjects in a normal sitting position.","PeriodicalId":200810,"journal":{"name":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KinRes: depth sensor noise reduction in contactless respiratory monitoring\",\"authors\":\"Kaveh Bakhtiyari, J. Ziegler, H. Husain\",\"doi\":\"10.1145/3154862.3154896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel reliable solution, named KinRes, to extract contactless respiratory signal via an IR-3D Depth sensor (Microsoft Kinect 2) on human subjects interacting with a computer. The depth sensor is very sensitive to the minor changes so that the body movements impose noise in the depth values. Previous studies on contactless respiratory concentrated solely on the still laid subjects on a surface to minimize the possible artifacts. To overcome these limitations, we low-pass filter the extracted signal. Then, a greedy self-correction algorithm is developed to correct the false detected peaks & troughs. The processed signal is validated with a simultaneous signal from a respiratory belt. This framework improved the accuracy of the signal by 24% for the subjects in a normal sitting position.\",\"PeriodicalId\":200810,\"journal\":{\"name\":\"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3154862.3154896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3154862.3154896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖可靠的解决方案,名为KinRes,通过IR-3D深度传感器(微软Kinect 2)在与计算机交互的人类受试者上提取非接触式呼吸信号。深度传感器对微小的变化非常敏感,因此人体运动在深度值中施加噪声。以前对非接触呼吸的研究仅仅集中在静止放置在表面上的受试者上,以尽量减少可能的伪影。为了克服这些限制,我们对提取的信号进行低通滤波。然后,提出了一种贪婪自校正算法来校正误检的波峰和波谷。处理后的信号与来自呼吸带的同步信号进行验证。对于处于正常坐姿的受试者,该框架将信号的准确性提高了24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KinRes: depth sensor noise reduction in contactless respiratory monitoring
This paper proposes a novel reliable solution, named KinRes, to extract contactless respiratory signal via an IR-3D Depth sensor (Microsoft Kinect 2) on human subjects interacting with a computer. The depth sensor is very sensitive to the minor changes so that the body movements impose noise in the depth values. Previous studies on contactless respiratory concentrated solely on the still laid subjects on a surface to minimize the possible artifacts. To overcome these limitations, we low-pass filter the extracted signal. Then, a greedy self-correction algorithm is developed to correct the false detected peaks & troughs. The processed signal is validated with a simultaneous signal from a respiratory belt. This framework improved the accuracy of the signal by 24% for the subjects in a normal sitting position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信