基于最优控制的无刷直流电动机换相转矩脉动抑制

Jian Liang, Yao Sun, M. Su, Sijie Ning, Min Zhou, Hanbing Dan, Guo Xu
{"title":"基于最优控制的无刷直流电动机换相转矩脉动抑制","authors":"Jian Liang, Yao Sun, M. Su, Sijie Ning, Min Zhou, Hanbing Dan, Guo Xu","doi":"10.1109/SPEC.2018.8635982","DOIUrl":null,"url":null,"abstract":"A method based on optimal control is proposed to reduce the commutation torque ripple of brushless dc motors (BLDCMs) in this paper. The theoretical background on optimal control and its design process when applied to BLDCM for commutation torque ripple reduction are given. According to the proposed method, the optimal switching state is selected and applied in the commutation period directly, which makes the non-commutated phase currents stable. Therefore, the commutation torque ripple of the BLDCM is reduced. Simulation results show the effectiveness of the proposed strategy in both high-speed and low-speed conditions as compared to that of the conventional control method.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutation Torque Ripple Reduction for Brushless DC Motors Based on Optimal Control\",\"authors\":\"Jian Liang, Yao Sun, M. Su, Sijie Ning, Min Zhou, Hanbing Dan, Guo Xu\",\"doi\":\"10.1109/SPEC.2018.8635982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method based on optimal control is proposed to reduce the commutation torque ripple of brushless dc motors (BLDCMs) in this paper. The theoretical background on optimal control and its design process when applied to BLDCM for commutation torque ripple reduction are given. According to the proposed method, the optimal switching state is selected and applied in the commutation period directly, which makes the non-commutated phase currents stable. Therefore, the commutation torque ripple of the BLDCM is reduced. Simulation results show the effectiveness of the proposed strategy in both high-speed and low-speed conditions as compared to that of the conventional control method.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8635982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于最优控制的无刷直流电动机换相转矩脉动减小方法。给出了最优控制的理论背景及其应用于无刷直流电机减换转矩脉动的设计过程。根据所提出的方法,选择最优开关状态并直接应用于换相周期,使非换相电流稳定。从而减小了无刷直流电机的换向转矩脉动。仿真结果表明,与传统控制方法相比,该控制策略在高速和低速条件下都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutation Torque Ripple Reduction for Brushless DC Motors Based on Optimal Control
A method based on optimal control is proposed to reduce the commutation torque ripple of brushless dc motors (BLDCMs) in this paper. The theoretical background on optimal control and its design process when applied to BLDCM for commutation torque ripple reduction are given. According to the proposed method, the optimal switching state is selected and applied in the commutation period directly, which makes the non-commutated phase currents stable. Therefore, the commutation torque ripple of the BLDCM is reduced. Simulation results show the effectiveness of the proposed strategy in both high-speed and low-speed conditions as compared to that of the conventional control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信