基于通用模糊自动机的生物序列预测

M. Doostfatemeh, S. C. Kremer
{"title":"基于通用模糊自动机的生物序列预测","authors":"M. Doostfatemeh, S. C. Kremer","doi":"10.1109/CIBCB.2005.1594947","DOIUrl":null,"url":null,"abstract":"This paper shows how the newly developed paradigm of General Fuzzy Automata (GFA) can be used as a biological sequence predictor. We consider the positional correlations of amino acids in a protein family as the basic criteria for prediction and classification of unknown sequences. It will be shown how the GFA formalism can be used as an efficient tool for classification of protein sequences. The results show that this approach predicts the membership of an unknown sequence in a protein family better than profile Hidden Markov Models (HMMs) which are now a popular and putative approach in biological sequence analysis.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biological Sequence Prediction using General Fuzzy Automata\",\"authors\":\"M. Doostfatemeh, S. C. Kremer\",\"doi\":\"10.1109/CIBCB.2005.1594947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows how the newly developed paradigm of General Fuzzy Automata (GFA) can be used as a biological sequence predictor. We consider the positional correlations of amino acids in a protein family as the basic criteria for prediction and classification of unknown sequences. It will be shown how the GFA formalism can be used as an efficient tool for classification of protein sequences. The results show that this approach predicts the membership of an unknown sequence in a protein family better than profile Hidden Markov Models (HMMs) which are now a popular and putative approach in biological sequence analysis.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了新开发的通用模糊自动机(GFA)范式如何用于生物序列预测。我们将蛋白质家族中氨基酸的位置相关性作为预测和分类未知序列的基本标准。它将显示如何GFA形式可以用作蛋白质序列分类的有效工具。结果表明,该方法比隐马尔可夫模型(hmm)更好地预测未知序列在蛋白质家族中的隶属关系,hmm是目前生物序列分析中常用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological Sequence Prediction using General Fuzzy Automata
This paper shows how the newly developed paradigm of General Fuzzy Automata (GFA) can be used as a biological sequence predictor. We consider the positional correlations of amino acids in a protein family as the basic criteria for prediction and classification of unknown sequences. It will be shown how the GFA formalism can be used as an efficient tool for classification of protein sequences. The results show that this approach predicts the membership of an unknown sequence in a protein family better than profile Hidden Markov Models (HMMs) which are now a popular and putative approach in biological sequence analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信