温度调节超稳定石英振荡器的各种方法

S. Galliou, M. Mourey, F. Marionnet
{"title":"温度调节超稳定石英振荡器的各种方法","authors":"S. Galliou, M. Mourey, F. Marionnet","doi":"10.1109/FREQ.2000.887397","DOIUrl":null,"url":null,"abstract":"An ultrastable quartz crystal oscillator (USO) must obviously be ovenized. Frequency fluctuations partly come from static changes of the ambient temperature as well as dynamic ones. Both effects are detailed and their consequences on the oven design are discussed. The static frequency deviation is mainly related to the efficiency of the thermal regulator: for example, to achieve a relative frequency fluctuation a few 10/sup -10/ over an ambient temperature range of [-30/spl deg/C, +70/spl deg/C], the static thermal gain must reach at least 1000. However, a standard proportional and integral thermal controller which can eliminate the static error is unable to do this for the fast thermal disturbances. Here the thermal filtering must work in accordance with the cut-off frequency of the frequency-temperature transfer function of the quartz resonator. Various methods for controlling the oscillator temperature are presented: the usual method consists of using more than one temperature-controlled oven. This is often a volume-consuming process. An alternative approach, which is much simpler, is to add a \"light\" compensation effect to the feedback control system. A third way to improve the temperature regulation is based on distribution of the monitoring power. Obviously, a mix of those solutions is possible. Advantages and drawbacks of each of them are discussed. Practical results are shown and illustrated with 10 MHz USO devices.","PeriodicalId":294110,"journal":{"name":"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Various ways to temperature-regulate an ultrastable quartz oscillator\",\"authors\":\"S. Galliou, M. Mourey, F. Marionnet\",\"doi\":\"10.1109/FREQ.2000.887397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrastable quartz crystal oscillator (USO) must obviously be ovenized. Frequency fluctuations partly come from static changes of the ambient temperature as well as dynamic ones. Both effects are detailed and their consequences on the oven design are discussed. The static frequency deviation is mainly related to the efficiency of the thermal regulator: for example, to achieve a relative frequency fluctuation a few 10/sup -10/ over an ambient temperature range of [-30/spl deg/C, +70/spl deg/C], the static thermal gain must reach at least 1000. However, a standard proportional and integral thermal controller which can eliminate the static error is unable to do this for the fast thermal disturbances. Here the thermal filtering must work in accordance with the cut-off frequency of the frequency-temperature transfer function of the quartz resonator. Various methods for controlling the oscillator temperature are presented: the usual method consists of using more than one temperature-controlled oven. This is often a volume-consuming process. An alternative approach, which is much simpler, is to add a \\\"light\\\" compensation effect to the feedback control system. A third way to improve the temperature regulation is based on distribution of the monitoring power. Obviously, a mix of those solutions is possible. Advantages and drawbacks of each of them are discussed. Practical results are shown and illustrated with 10 MHz USO devices.\",\"PeriodicalId\":294110,\"journal\":{\"name\":\"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2000.887397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2000.887397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超稳定石英晶体振荡器(USO)显然必须经过加热处理。频率波动部分来源于环境温度的静态变化,部分来源于环境温度的动态变化。详细讨论了这两种影响,并讨论了它们对烘箱设计的影响。静态频率偏差主要与热调节器的效率有关:例如,要在环境温度[-30/spl℃,+70/spl℃]范围内实现10/sup -10/的相对频率波动,静态热增益必须至少达到1000。然而,对于快速的热扰动,可以消除静态误差的标准比例积分热控制器无法做到这一点。在这里,热滤波必须按照石英谐振器的频率-温度传递函数的截止频率工作。提出了控制振荡器温度的各种方法:通常的方法包括使用多个温控烤箱。这通常是一个大量消耗的过程。另一种简单得多的方法是在反馈控制系统中添加“光”补偿效应。第三种改善温度调节的方法是基于监测功率的分布。显然,混合使用这些解决方案是可能的。讨论了每种方法的优缺点。用10兆赫USO器件给出了实际结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Various ways to temperature-regulate an ultrastable quartz oscillator
An ultrastable quartz crystal oscillator (USO) must obviously be ovenized. Frequency fluctuations partly come from static changes of the ambient temperature as well as dynamic ones. Both effects are detailed and their consequences on the oven design are discussed. The static frequency deviation is mainly related to the efficiency of the thermal regulator: for example, to achieve a relative frequency fluctuation a few 10/sup -10/ over an ambient temperature range of [-30/spl deg/C, +70/spl deg/C], the static thermal gain must reach at least 1000. However, a standard proportional and integral thermal controller which can eliminate the static error is unable to do this for the fast thermal disturbances. Here the thermal filtering must work in accordance with the cut-off frequency of the frequency-temperature transfer function of the quartz resonator. Various methods for controlling the oscillator temperature are presented: the usual method consists of using more than one temperature-controlled oven. This is often a volume-consuming process. An alternative approach, which is much simpler, is to add a "light" compensation effect to the feedback control system. A third way to improve the temperature regulation is based on distribution of the monitoring power. Obviously, a mix of those solutions is possible. Advantages and drawbacks of each of them are discussed. Practical results are shown and illustrated with 10 MHz USO devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信