稳定通过静态输出反馈

A. T. Neto, V. Kučera
{"title":"稳定通过静态输出反馈","authors":"A. T. Neto, V. Kučera","doi":"10.1109/CDC.1991.261451","DOIUrl":null,"url":null,"abstract":"Necessary and sufficient conditions for the existence of stabilizing static output feedback gains are presented. The requirement of output feedback introduces a structural constraint between the states and the controls. It is shown that such a structural constraint is satisfied if and only if the weighting matrix associated to the cross term of the quadratic loss function satisfies some conditions. The authors demonstrate that any stabilizing static output feedback is the solution of a linear quadratic control problem where the cost function has a suitable cross term.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Stabilization via static output feedback\",\"authors\":\"A. T. Neto, V. Kučera\",\"doi\":\"10.1109/CDC.1991.261451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Necessary and sufficient conditions for the existence of stabilizing static output feedback gains are presented. The requirement of output feedback introduces a structural constraint between the states and the controls. It is shown that such a structural constraint is satisfied if and only if the weighting matrix associated to the cross term of the quadratic loss function satisfies some conditions. The authors demonstrate that any stabilizing static output feedback is the solution of a linear quadratic control problem where the cost function has a suitable cross term.<<ETX>>\",\"PeriodicalId\":344553,\"journal\":{\"name\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1991.261451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

给出了稳态输出反馈增益存在的充分必要条件。输出反馈的要求在状态和控制之间引入了结构约束。结果表明,当且仅当二次损失函数的交叉项所对应的加权矩阵满足一定条件时,才满足这种结构约束。证明了任何稳定的静态输出反馈都是代价函数具有合适交叉项的线性二次控制问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization via static output feedback
Necessary and sufficient conditions for the existence of stabilizing static output feedback gains are presented. The requirement of output feedback introduces a structural constraint between the states and the controls. It is shown that such a structural constraint is satisfied if and only if the weighting matrix associated to the cross term of the quadratic loss function satisfies some conditions. The authors demonstrate that any stabilizing static output feedback is the solution of a linear quadratic control problem where the cost function has a suitable cross term.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信