基于真实测试案例的电动汽车智能充电可部署在线优化框架

Nathaniel Tucker, M. Alizadeh
{"title":"基于真实测试案例的电动汽车智能充电可部署在线优化框架","authors":"Nathaniel Tucker, M. Alizadeh","doi":"10.1109/SmartGridComm52983.2022.9961029","DOIUrl":null,"url":null,"abstract":"We present a customizable online optimization framework for real-time EV smart charging to be readily implemented at real large-scale charging facilities. Notably, due to real-world constraints, we designed our framework around 3 main requirements. First, the smart charging strategy is readily deployable and customizable for a wide-array of facilities, infrastructure, objectives, and constraints. Second, the online optimization framework can be easily modified to operate with or without user input for energy request amounts and/or departure time estimates which allows our framework to be implemented on standard chargers with 1-way communication or newer charg-ers with 2-way communication. Third, our online optimization framework outperforms other real-time strategies (including first-come- first-serve, least-laxity-first, earliest-deadline-first, etc.) in multiple real-world test cases with various objectives. We showcase our framework with two real-world test cases with charging session data sourced from SLAC and Google campuses in the Bay Area.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deployable Online Optimization Framework for EV Smart Charging with Real-World Test Cases\",\"authors\":\"Nathaniel Tucker, M. Alizadeh\",\"doi\":\"10.1109/SmartGridComm52983.2022.9961029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a customizable online optimization framework for real-time EV smart charging to be readily implemented at real large-scale charging facilities. Notably, due to real-world constraints, we designed our framework around 3 main requirements. First, the smart charging strategy is readily deployable and customizable for a wide-array of facilities, infrastructure, objectives, and constraints. Second, the online optimization framework can be easily modified to operate with or without user input for energy request amounts and/or departure time estimates which allows our framework to be implemented on standard chargers with 1-way communication or newer charg-ers with 2-way communication. Third, our online optimization framework outperforms other real-time strategies (including first-come- first-serve, least-laxity-first, earliest-deadline-first, etc.) in multiple real-world test cases with various objectives. We showcase our framework with two real-world test cases with charging session data sourced from SLAC and Google campuses in the Bay Area.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9961029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9961029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个可定制的在线优化框架,用于实时电动汽车智能充电,以便在实际的大规模充电设施中轻松实施。值得注意的是,由于现实世界的限制,我们围绕3个主要需求设计了框架。首先,智能充电策略易于部署和定制,适用于各种设施、基础设施、目标和限制。其次,在线优化框架可以很容易地修改,以在有或没有用户输入能量请求量和/或出发时间估计的情况下运行,这使得我们的框架可以在具有单向通信的标准充电器或具有双向通信的新充电器上实施。第三,我们的在线优化框架在具有各种目标的多个实际测试用例中优于其他实时策略(包括先到先服务,最少宽松优先,最早截止日期优先等)。我们用两个真实世界的测试用例展示了我们的框架,这些测试用例的收费会话数据来自旧金山湾区的SLAC和Google园区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deployable Online Optimization Framework for EV Smart Charging with Real-World Test Cases
We present a customizable online optimization framework for real-time EV smart charging to be readily implemented at real large-scale charging facilities. Notably, due to real-world constraints, we designed our framework around 3 main requirements. First, the smart charging strategy is readily deployable and customizable for a wide-array of facilities, infrastructure, objectives, and constraints. Second, the online optimization framework can be easily modified to operate with or without user input for energy request amounts and/or departure time estimates which allows our framework to be implemented on standard chargers with 1-way communication or newer charg-ers with 2-way communication. Third, our online optimization framework outperforms other real-time strategies (including first-come- first-serve, least-laxity-first, earliest-deadline-first, etc.) in multiple real-world test cases with various objectives. We showcase our framework with two real-world test cases with charging session data sourced from SLAC and Google campuses in the Bay Area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信