NLP的范式聚类

Julio Santisteban, Javier Tejada-Cárcamo
{"title":"NLP的范式聚类","authors":"Julio Santisteban, Javier Tejada-Cárcamo","doi":"10.1109/ICDMW.2015.233","DOIUrl":null,"url":null,"abstract":"How can we retrieve meaningful information from a large and sparse graph?. Traditional approaches focus on generic clustering techniques and discovering dense cumulus in a network graph, however, they tend to omit interesting patterns such as the paradigmatic relations. In this paper, we propose a novel graph clustering technique modelling the relations of a node using the paradigmatic analysis. We exploit node's relations to extract its existing sets of signifiers. The newly found clusters represent a different view of a graph, which provides interesting insights into the structure of a sparse network graph. Our proposed algorithm PaC (Paradigmatic Clustering) for clustering graphs uses paradigmatic analysis supported by a asymmetric similarity, in contrast to traditional graph clustering methods, our algorithm yields worthy results in tasks of word-sense disambiguation. In addition we propose a novel paradigmatic similarity measure. Extensive experiments and empirical analysis are used to evaluate our algorithm on synthetic and real data.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Paradigmatic Clustering for NLP\",\"authors\":\"Julio Santisteban, Javier Tejada-Cárcamo\",\"doi\":\"10.1109/ICDMW.2015.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can we retrieve meaningful information from a large and sparse graph?. Traditional approaches focus on generic clustering techniques and discovering dense cumulus in a network graph, however, they tend to omit interesting patterns such as the paradigmatic relations. In this paper, we propose a novel graph clustering technique modelling the relations of a node using the paradigmatic analysis. We exploit node's relations to extract its existing sets of signifiers. The newly found clusters represent a different view of a graph, which provides interesting insights into the structure of a sparse network graph. Our proposed algorithm PaC (Paradigmatic Clustering) for clustering graphs uses paradigmatic analysis supported by a asymmetric similarity, in contrast to traditional graph clustering methods, our algorithm yields worthy results in tasks of word-sense disambiguation. In addition we propose a novel paradigmatic similarity measure. Extensive experiments and empirical analysis are used to evaluate our algorithm on synthetic and real data.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们如何从一个大而稀疏的图中检索有意义的信息?传统的方法侧重于通用聚类技术和发现网络图中的密集积云,然而,它们往往忽略了有趣的模式,如范式关系。在本文中,我们提出了一种新的图聚类技术,利用范式分析对节点之间的关系进行建模。我们利用节点的关系来提取其现有的能指集。新发现的聚类代表了图的不同视图,这为稀疏网络图的结构提供了有趣的见解。我们提出的聚类图的聚类算法PaC(范式聚类)使用非对称相似度支持的聚类分析,与传统的图聚类方法相比,我们的算法在词义消歧任务中产生了有价值的结果。此外,我们提出了一种新的范式相似性度量。通过大量的实验和实证分析,在合成数据和实际数据上对我们的算法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paradigmatic Clustering for NLP
How can we retrieve meaningful information from a large and sparse graph?. Traditional approaches focus on generic clustering techniques and discovering dense cumulus in a network graph, however, they tend to omit interesting patterns such as the paradigmatic relations. In this paper, we propose a novel graph clustering technique modelling the relations of a node using the paradigmatic analysis. We exploit node's relations to extract its existing sets of signifiers. The newly found clusters represent a different view of a graph, which provides interesting insights into the structure of a sparse network graph. Our proposed algorithm PaC (Paradigmatic Clustering) for clustering graphs uses paradigmatic analysis supported by a asymmetric similarity, in contrast to traditional graph clustering methods, our algorithm yields worthy results in tasks of word-sense disambiguation. In addition we propose a novel paradigmatic similarity measure. Extensive experiments and empirical analysis are used to evaluate our algorithm on synthetic and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信