{"title":"摩擦电纳米发电机动力学研究进展","authors":"Guoqiang Xu, Chuanyang Li, Chaojie Chen, Jingjing Fu, Tingting Hou, Yunlong Zi","doi":"10.1002/msd2.12058","DOIUrl":null,"url":null,"abstract":"<p>Triboelectric nanogenerators (TENGs) represent a promising next-generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"2 4","pages":"311-324"},"PeriodicalIF":3.4000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12058","citationCount":"5","resultStr":"{\"title\":\"Dynamics of triboelectric nanogenerators: A review\",\"authors\":\"Guoqiang Xu, Chuanyang Li, Chaojie Chen, Jingjing Fu, Tingting Hou, Yunlong Zi\",\"doi\":\"10.1002/msd2.12058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Triboelectric nanogenerators (TENGs) represent a promising next-generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"2 4\",\"pages\":\"311-324\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12058\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamics of triboelectric nanogenerators: A review
Triboelectric nanogenerators (TENGs) represent a promising next-generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.