银河发射线区域分类的机器学习方法

C. Rhea, L. Rousseau-Nepton, I. Moumen, S. Prunet, J. Hlavacek-Larrondo, K. Grasha, C. Robert, C. Morisset, G. Stasińska, N. Vale-Asari, Justine Giroux, A. McLeod, M. Gendron-Marsolais, Junfeng Wang, J. Lyman, L. Chemin
{"title":"银河发射线区域分类的机器学习方法","authors":"C. Rhea, L. Rousseau-Nepton, I. Moumen, S. Prunet, J. Hlavacek-Larrondo, K. Grasha, C. Robert, C. Morisset, G. Stasińska, N. Vale-Asari, Justine Giroux, A. McLeod, M. Gendron-Marsolais, Junfeng Wang, J. Lyman, L. Chemin","doi":"10.1093/rasti/rzad023","DOIUrl":null,"url":null,"abstract":"\n Diagnostic diagrams of emission-line ratios have been used extensively to categorize extragalactic emission regions; however, these diagnostics are occasionally at odds with each other due to differing definitions. In this work, we study the applicability of supervised machine-learning techniques to systematically classify emission-line regions from the ratios of certain emission lines. Using the Million Mexican Model database, which contains information from grids of photoionization models using cloudy, and from shock models, we develop training and test sets of emission line fluxes for three key diagnostic ratios. The sets are created for three classifications: classic H ii regions, planetary nebulae, and supernova remnants. We train a neural network to classify a region as one of the three classes defined above given three key line ratios that are present both in the SITELLE and MUSE instruments’ band-passes: [O iii]λ5007/H β, [N ii]λ6583/H α, ([S ii]λ6717+[S ii]λ6731)/H α. We also tested the impact of the addition of the [O ii]λ3726, 3729/[O iii]λ5007 line ratio when available for the classification. A maximum luminosity limit is introduced to improve the classification of the planetary nebulae. Furthermore, the network is applied to SITELLE observations of a prominent field of M33. We discuss where the network succeeds and why it fails in certain cases. Our results provide a framework for the use of machine learning as a tool for the classification of extragalactic emission regions. Further work is needed to build more comprehensive training sets and adapt the method to additional observational constraints.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"11 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to galactic emission-line region classification\",\"authors\":\"C. Rhea, L. Rousseau-Nepton, I. Moumen, S. Prunet, J. Hlavacek-Larrondo, K. Grasha, C. Robert, C. Morisset, G. Stasińska, N. Vale-Asari, Justine Giroux, A. McLeod, M. Gendron-Marsolais, Junfeng Wang, J. Lyman, L. Chemin\",\"doi\":\"10.1093/rasti/rzad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Diagnostic diagrams of emission-line ratios have been used extensively to categorize extragalactic emission regions; however, these diagnostics are occasionally at odds with each other due to differing definitions. In this work, we study the applicability of supervised machine-learning techniques to systematically classify emission-line regions from the ratios of certain emission lines. Using the Million Mexican Model database, which contains information from grids of photoionization models using cloudy, and from shock models, we develop training and test sets of emission line fluxes for three key diagnostic ratios. The sets are created for three classifications: classic H ii regions, planetary nebulae, and supernova remnants. We train a neural network to classify a region as one of the three classes defined above given three key line ratios that are present both in the SITELLE and MUSE instruments’ band-passes: [O iii]λ5007/H β, [N ii]λ6583/H α, ([S ii]λ6717+[S ii]λ6731)/H α. We also tested the impact of the addition of the [O ii]λ3726, 3729/[O iii]λ5007 line ratio when available for the classification. A maximum luminosity limit is introduced to improve the classification of the planetary nebulae. Furthermore, the network is applied to SITELLE observations of a prominent field of M33. We discuss where the network succeeds and why it fails in certain cases. Our results provide a framework for the use of machine learning as a tool for the classification of extragalactic emission regions. Further work is needed to build more comprehensive training sets and adapt the method to additional observational constraints.\",\"PeriodicalId\":367327,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"11 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzad023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发射在线比率诊断图已广泛用于对河外发射区进行分类;然而,由于不同的定义,这些诊断有时彼此不一致。在这项工作中,我们研究了监督机器学习技术的适用性,以系统地从某些发射线的比率分类发射线区域。利用百万墨西哥模型数据库,其中包含来自使用云的光电离模型网格和来自激波模型的信息,我们开发了用于三个关键诊断比率的发射线通量的训练和测试集。这些集合是为三种类型创建的:经典的H区,行星状星云和超新星遗迹。我们训练一个神经网络,根据SITELLE和MUSE仪器的带通中存在的三个关键线比,将区域分类为上述三类之一:[O iii]λ5007/H β, [N ii]λ6583/H α, ([S ii]λ6717+[S ii]λ6731)/H α。我们还测试了添加[O ii]λ3726、3729/[O iii]λ5007线比对分类的影响。为了改进行星状星云的分类,引入了最大光度限制。此外,该网络还应用于M33一个突出区域的SITELLE观测。我们将讨论网络成功的地方以及在某些情况下失败的原因。我们的研究结果为使用机器学习作为河外发射区域分类的工具提供了一个框架。需要进一步的工作来建立更全面的训练集,并使该方法适应额外的观测约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to galactic emission-line region classification
Diagnostic diagrams of emission-line ratios have been used extensively to categorize extragalactic emission regions; however, these diagnostics are occasionally at odds with each other due to differing definitions. In this work, we study the applicability of supervised machine-learning techniques to systematically classify emission-line regions from the ratios of certain emission lines. Using the Million Mexican Model database, which contains information from grids of photoionization models using cloudy, and from shock models, we develop training and test sets of emission line fluxes for three key diagnostic ratios. The sets are created for three classifications: classic H ii regions, planetary nebulae, and supernova remnants. We train a neural network to classify a region as one of the three classes defined above given three key line ratios that are present both in the SITELLE and MUSE instruments’ band-passes: [O iii]λ5007/H β, [N ii]λ6583/H α, ([S ii]λ6717+[S ii]λ6731)/H α. We also tested the impact of the addition of the [O ii]λ3726, 3729/[O iii]λ5007 line ratio when available for the classification. A maximum luminosity limit is introduced to improve the classification of the planetary nebulae. Furthermore, the network is applied to SITELLE observations of a prominent field of M33. We discuss where the network succeeds and why it fails in certain cases. Our results provide a framework for the use of machine learning as a tool for the classification of extragalactic emission regions. Further work is needed to build more comprehensive training sets and adapt the method to additional observational constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信