网格盒空间模拟性能优化

K. Hawick, H. James, C. Scogings
{"title":"网格盒空间模拟性能优化","authors":"K. Hawick, H. James, C. Scogings","doi":"10.1109/ANSS.2006.21","DOIUrl":null,"url":null,"abstract":"Computer simulations of complex systems such as physical aggregation processes or swarming and collective behaviour of life-forms, often require order N-squared computational complexity for N microscopic components. This is a significant handicap to simulating systems large enough to compare with real-world experimental data. We discuss space partitioning methods for two such simulation codes and demonstrate complexity improvements by taking advantage of information about locations and interaction distances of the microscopic model components. We present results for a diffusion limited cluster-cluster aggregation code and for an artificial life simulation code. We discuss the data structures necessary to support such algorithms and show how they can be implemented to obtain high performance and maximal simulation productivity for a given computational resource. There are some subtleties in whether such spatial partitioning algorithms should produce a computational complexity of N to some power between 1 and 2 or whether they should be order N log N. We discuss these effects in the context of our data.","PeriodicalId":308739,"journal":{"name":"39th Annual Simulation Symposium (ANSS'06)","volume":"3 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Grid-boxing for spatial simulation performance optimisation\",\"authors\":\"K. Hawick, H. James, C. Scogings\",\"doi\":\"10.1109/ANSS.2006.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer simulations of complex systems such as physical aggregation processes or swarming and collective behaviour of life-forms, often require order N-squared computational complexity for N microscopic components. This is a significant handicap to simulating systems large enough to compare with real-world experimental data. We discuss space partitioning methods for two such simulation codes and demonstrate complexity improvements by taking advantage of information about locations and interaction distances of the microscopic model components. We present results for a diffusion limited cluster-cluster aggregation code and for an artificial life simulation code. We discuss the data structures necessary to support such algorithms and show how they can be implemented to obtain high performance and maximal simulation productivity for a given computational resource. There are some subtleties in whether such spatial partitioning algorithms should produce a computational complexity of N to some power between 1 and 2 or whether they should be order N log N. We discuss these effects in the context of our data.\",\"PeriodicalId\":308739,\"journal\":{\"name\":\"39th Annual Simulation Symposium (ANSS'06)\",\"volume\":\"3 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"39th Annual Simulation Symposium (ANSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANSS.2006.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual Simulation Symposium (ANSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANSS.2006.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

复杂系统的计算机模拟,如物理聚集过程或生命形式的群体和集体行为,通常需要N个微观组件的N平方阶计算复杂度。这是模拟大到足以与真实世界实验数据进行比较的系统的一个重大障碍。我们讨论了两个这样的仿真代码的空间划分方法,并通过利用有关微观模型组件的位置和相互作用距离的信息来证明复杂性的改进。我们给出了一个有限扩散簇-簇聚合码和一个人工生命模拟码的结果。我们讨论了支持此类算法所需的数据结构,并展示了如何实现它们以获得给定计算资源的高性能和最大模拟生产力。这种空间划分算法是否应该产生N的1到2次方的计算复杂度,或者它们是否应该是N的log N阶,这是一些微妙的问题。我们将在我们的数据上下文中讨论这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid-boxing for spatial simulation performance optimisation
Computer simulations of complex systems such as physical aggregation processes or swarming and collective behaviour of life-forms, often require order N-squared computational complexity for N microscopic components. This is a significant handicap to simulating systems large enough to compare with real-world experimental data. We discuss space partitioning methods for two such simulation codes and demonstrate complexity improvements by taking advantage of information about locations and interaction distances of the microscopic model components. We present results for a diffusion limited cluster-cluster aggregation code and for an artificial life simulation code. We discuss the data structures necessary to support such algorithms and show how they can be implemented to obtain high performance and maximal simulation productivity for a given computational resource. There are some subtleties in whether such spatial partitioning algorithms should produce a computational complexity of N to some power between 1 and 2 or whether they should be order N log N. We discuss these effects in the context of our data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信