隐藏条件对抗性攻击

Junyoung Byun, Kyujin Shim, Hyojun Go, Changick Kim
{"title":"隐藏条件对抗性攻击","authors":"Junyoung Byun, Kyujin Shim, Hyojun Go, Changick Kim","doi":"10.1109/ICIP46576.2022.9898075","DOIUrl":null,"url":null,"abstract":"Deep neural networks are vulnerable to maliciously crafted inputs called adversarial examples. Research on unprecedented adversarial attacks is significant since it can help strengthen the reliability of neural networks by alarming potential threats against them. However, since existing adversarial attacks disturb models unconditionally, the resulting adversarial examples increase their detectability through statistical observations or human inspection. To tackle this limitation, we propose hidden conditional adversarial attacks whose resultant adversarial examples disturb models only if the input images satisfy attackers’ pre-defined conditions. These hidden conditional adversarial examples have better stealthiness and controllability of their attack ability. Our experimental results on the CIFAR-10 and ImageNet datasets show their effectiveness and raise a serious concern about the vulnerability of CNNs against the novel attacks.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden Conditional Adversarial Attacks\",\"authors\":\"Junyoung Byun, Kyujin Shim, Hyojun Go, Changick Kim\",\"doi\":\"10.1109/ICIP46576.2022.9898075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are vulnerable to maliciously crafted inputs called adversarial examples. Research on unprecedented adversarial attacks is significant since it can help strengthen the reliability of neural networks by alarming potential threats against them. However, since existing adversarial attacks disturb models unconditionally, the resulting adversarial examples increase their detectability through statistical observations or human inspection. To tackle this limitation, we propose hidden conditional adversarial attacks whose resultant adversarial examples disturb models only if the input images satisfy attackers’ pre-defined conditions. These hidden conditional adversarial examples have better stealthiness and controllability of their attack ability. Our experimental results on the CIFAR-10 and ImageNet datasets show their effectiveness and raise a serious concern about the vulnerability of CNNs against the novel attacks.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9898075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络很容易受到被称为对抗性示例的恶意输入的攻击。研究前所未有的对抗性攻击是非常重要的,因为它可以通过警告潜在的威胁来帮助增强神经网络的可靠性。然而,由于现有的对抗性攻击会无条件地干扰模型,因此产生的对抗性示例通过统计观察或人工检查来提高其可检测性。为了解决这一限制,我们提出了隐藏条件对抗性攻击,只有当输入图像满足攻击者预定义的条件时,其产生的对抗性示例才会干扰模型。这些隐式条件对抗实例具有较好的隐蔽性和攻击能力可控性。我们在CIFAR-10和ImageNet数据集上的实验结果显示了它们的有效性,并引起了对cnn在新型攻击中的脆弱性的严重关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Conditional Adversarial Attacks
Deep neural networks are vulnerable to maliciously crafted inputs called adversarial examples. Research on unprecedented adversarial attacks is significant since it can help strengthen the reliability of neural networks by alarming potential threats against them. However, since existing adversarial attacks disturb models unconditionally, the resulting adversarial examples increase their detectability through statistical observations or human inspection. To tackle this limitation, we propose hidden conditional adversarial attacks whose resultant adversarial examples disturb models only if the input images satisfy attackers’ pre-defined conditions. These hidden conditional adversarial examples have better stealthiness and controllability of their attack ability. Our experimental results on the CIFAR-10 and ImageNet datasets show their effectiveness and raise a serious concern about the vulnerability of CNNs against the novel attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信