分割算子傅里叶变换方法在求解非线性薛定谔方程中的应用

P. DeVries
{"title":"分割算子傅里叶变换方法在求解非线性薛定谔方程中的应用","authors":"P. DeVries","doi":"10.1063/1.36847","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrodinger equation arises naturally in a variety of physical processes; in particular, it is fundamentally important to nonlinear optics. Both the analytic and numerical solutions of this equation have been extensively investigated; a recent review by Taha and Ablowitz1 suggests that for soliton propagation problems the method of Hardin and Tapped2 is the superior numerical method. In this paper, the split operator Fourier transform (SOFT) method, originally due to Fleck et al.,3 is demonstrated to be applicable to the nonlinear Schrodinger equation. For the particular soliton problem studied,4 the results obtained with the SOFT method are found to be an order of magnitude more accurate than those obtained with the Hardin-Tappert method.","PeriodicalId":422579,"journal":{"name":"International Laser Science Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Application of the split operator Fourier transform method to the solution of the nonlinear Schrodinger equation\",\"authors\":\"P. DeVries\",\"doi\":\"10.1063/1.36847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear Schrodinger equation arises naturally in a variety of physical processes; in particular, it is fundamentally important to nonlinear optics. Both the analytic and numerical solutions of this equation have been extensively investigated; a recent review by Taha and Ablowitz1 suggests that for soliton propagation problems the method of Hardin and Tapped2 is the superior numerical method. In this paper, the split operator Fourier transform (SOFT) method, originally due to Fleck et al.,3 is demonstrated to be applicable to the nonlinear Schrodinger equation. For the particular soliton problem studied,4 the results obtained with the SOFT method are found to be an order of magnitude more accurate than those obtained with the Hardin-Tappert method.\",\"PeriodicalId\":422579,\"journal\":{\"name\":\"International Laser Science Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Laser Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.36847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Laser Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.36847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

非线性薛定谔方程自然出现在各种物理过程中;特别是,它对非线性光学至关重要。这个方程的解析解和数值解都得到了广泛的研究;Taha和Ablowitz1最近的一篇综述表明,对于孤子传播问题,Hardin和Tapped2方法是较好的数值方法。本文证明了分裂算子傅里叶变换(SOFT)方法适用于非线性薛定谔方程,该方法最初是由Fleck等人提出的。对于所研究的特殊孤子问题,发现用SOFT方法得到的结果比用Hardin-Tappert方法得到的结果精确一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the split operator Fourier transform method to the solution of the nonlinear Schrodinger equation
The nonlinear Schrodinger equation arises naturally in a variety of physical processes; in particular, it is fundamentally important to nonlinear optics. Both the analytic and numerical solutions of this equation have been extensively investigated; a recent review by Taha and Ablowitz1 suggests that for soliton propagation problems the method of Hardin and Tapped2 is the superior numerical method. In this paper, the split operator Fourier transform (SOFT) method, originally due to Fleck et al.,3 is demonstrated to be applicable to the nonlinear Schrodinger equation. For the particular soliton problem studied,4 the results obtained with the SOFT method are found to be an order of magnitude more accurate than those obtained with the Hardin-Tappert method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信