{"title":"基于任务的多核结构双向递归神经网络加速","authors":"Robin Kumar Sharma, Marc Casas","doi":"10.1109/ipdps53621.2022.00096","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel parallel execution model for Bidirectional Recurrent Neural Networks (BRNNs), B-Par (Bidirectional-Parallelization), which exploits data and control dependencies for forward and reverse input computations. B-Par divides BRNN workloads across different parallel tasks by defining input and output dependencies for each RNN cell in both forward and reverse orders. B-Par does not require per-layer barriers to synchronize the parallel execution of BRNNs. We evaluate B-Par considering the TIDIGITS speech database and the Wikipedia data-set. Our experiments indicate that B-Par outperforms the state-of-the-art deep learning frameworks TensorFlow-Keras and Pytorch by achieving up to 2.34× and 9.16× speed-ups, respectively, on modern multi-core CPU architectures while preserving accuracy. Moreover, we analyze in detail aspects like task granularity, locality, or parallel efficiency to illustrate the benefits of B-Par.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-based Acceleration of Bidirectional Recurrent Neural Networks on Multi-core Architectures\",\"authors\":\"Robin Kumar Sharma, Marc Casas\",\"doi\":\"10.1109/ipdps53621.2022.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel parallel execution model for Bidirectional Recurrent Neural Networks (BRNNs), B-Par (Bidirectional-Parallelization), which exploits data and control dependencies for forward and reverse input computations. B-Par divides BRNN workloads across different parallel tasks by defining input and output dependencies for each RNN cell in both forward and reverse orders. B-Par does not require per-layer barriers to synchronize the parallel execution of BRNNs. We evaluate B-Par considering the TIDIGITS speech database and the Wikipedia data-set. Our experiments indicate that B-Par outperforms the state-of-the-art deep learning frameworks TensorFlow-Keras and Pytorch by achieving up to 2.34× and 9.16× speed-ups, respectively, on modern multi-core CPU architectures while preserving accuracy. Moreover, we analyze in detail aspects like task granularity, locality, or parallel efficiency to illustrate the benefits of B-Par.\",\"PeriodicalId\":321801,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipdps53621.2022.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task-based Acceleration of Bidirectional Recurrent Neural Networks on Multi-core Architectures
This paper proposes a novel parallel execution model for Bidirectional Recurrent Neural Networks (BRNNs), B-Par (Bidirectional-Parallelization), which exploits data and control dependencies for forward and reverse input computations. B-Par divides BRNN workloads across different parallel tasks by defining input and output dependencies for each RNN cell in both forward and reverse orders. B-Par does not require per-layer barriers to synchronize the parallel execution of BRNNs. We evaluate B-Par considering the TIDIGITS speech database and the Wikipedia data-set. Our experiments indicate that B-Par outperforms the state-of-the-art deep learning frameworks TensorFlow-Keras and Pytorch by achieving up to 2.34× and 9.16× speed-ups, respectively, on modern multi-core CPU architectures while preserving accuracy. Moreover, we analyze in detail aspects like task granularity, locality, or parallel efficiency to illustrate the benefits of B-Par.