形态学特征和局部梯度描述符的HEp-2细胞分类

Ilias Theodorakopoulos, Dimitris Kastaniotis, G. Economou, S. Fotopoulos
{"title":"形态学特征和局部梯度描述符的HEp-2细胞分类","authors":"Ilias Theodorakopoulos, Dimitris Kastaniotis, G. Economou, S. Fotopoulos","doi":"10.1109/I3A.2014.16","DOIUrl":null,"url":null,"abstract":"A system for automatic classification of staining patterns in IIF imaging is presented. A full pipeline of pre-processing, feature extraction and classification stages is designed in order to overcome specific challenges posed by the nature of the data. In the preprocessing stage the images are subjected to normalization and de-noising using a sparse representation-based technique. A set morphological features, extracted using multi-level thresholding, is combined with a bundle of local gradient descriptors, selected so as to encode textural and structural information of the fluorescent patterns in multiple scales. The proposed method was evaluated using a dataset with over 10K images achieving over 90 percent of classification accuracy.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"HEp-2 Cells Classification Using Morphological Features and a Bundle of Local Gradient Descriptors\",\"authors\":\"Ilias Theodorakopoulos, Dimitris Kastaniotis, G. Economou, S. Fotopoulos\",\"doi\":\"10.1109/I3A.2014.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system for automatic classification of staining patterns in IIF imaging is presented. A full pipeline of pre-processing, feature extraction and classification stages is designed in order to overcome specific challenges posed by the nature of the data. In the preprocessing stage the images are subjected to normalization and de-noising using a sparse representation-based technique. A set morphological features, extracted using multi-level thresholding, is combined with a bundle of local gradient descriptors, selected so as to encode textural and structural information of the fluorescent patterns in multiple scales. The proposed method was evaluated using a dataset with over 10K images achieving over 90 percent of classification accuracy.\",\"PeriodicalId\":103785,\"journal\":{\"name\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I3A.2014.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了一种用于IIF成像染色模式自动分类的系统。为了克服数据性质带来的具体挑战,设计了一个完整的预处理、特征提取和分类阶段管道。在预处理阶段,使用基于稀疏表示的技术对图像进行归一化和去噪。采用多级阈值法提取一组形态学特征,并结合一组局部梯度描述符进行选择,在多尺度上编码荧光图案的纹理和结构信息。使用超过10K图像的数据集对所提出的方法进行了评估,获得了超过90%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HEp-2 Cells Classification Using Morphological Features and a Bundle of Local Gradient Descriptors
A system for automatic classification of staining patterns in IIF imaging is presented. A full pipeline of pre-processing, feature extraction and classification stages is designed in order to overcome specific challenges posed by the nature of the data. In the preprocessing stage the images are subjected to normalization and de-noising using a sparse representation-based technique. A set morphological features, extracted using multi-level thresholding, is combined with a bundle of local gradient descriptors, selected so as to encode textural and structural information of the fluorescent patterns in multiple scales. The proposed method was evaluated using a dataset with over 10K images achieving over 90 percent of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信