集成经验模态分解增强AR-MED反卷积过程在轴承故障检测中的应用

Yasser Damine, N. Bessous, A. C. Megherbi, S. Sbaa, A. Ünsal
{"title":"集成经验模态分解增强AR-MED反卷积过程在轴承故障检测中的应用","authors":"Yasser Damine, N. Bessous, A. C. Megherbi, S. Sbaa, A. Ünsal","doi":"10.1109/ICAECCS56710.2023.10104709","DOIUrl":null,"url":null,"abstract":"Due to its ability to enhance the fault impulses,autoregressive minimum entropy deconvolution (AR-MED) is a useful method in bearing fault diagnosis. However, when the signal includes a high level of noise, it seriously affects the deconvolution performance of AR-MED. Therefore, early defect information is hardly extractable from the vibration signals of rolling bearings. This paper aims to study the effectiveness of integrating ensemble empirical mode decomposition (EEMD) with AR-MED to improve the deconvolution procedure. Firstly, using EEMD, it is possible to divide the defect signal into IMFs. Then the relevant modes that contain defect information are identified via the IMFs envelope spectrum. After that, AR-MED is applied to the reconstructed signal. Finally, the results obtained are compared with those obtained by deconvolving directly the original vibration signal using AR-MED. The experimental results show that incorporating EEMD improves the deconvolution process of AR-MED for bearing fault diagnosis.","PeriodicalId":447668,"journal":{"name":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the AR-MED Deconvolution Process using Ensemble Empirical Mode Decomposition in Bearing Fault Detection\",\"authors\":\"Yasser Damine, N. Bessous, A. C. Megherbi, S. Sbaa, A. Ünsal\",\"doi\":\"10.1109/ICAECCS56710.2023.10104709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its ability to enhance the fault impulses,autoregressive minimum entropy deconvolution (AR-MED) is a useful method in bearing fault diagnosis. However, when the signal includes a high level of noise, it seriously affects the deconvolution performance of AR-MED. Therefore, early defect information is hardly extractable from the vibration signals of rolling bearings. This paper aims to study the effectiveness of integrating ensemble empirical mode decomposition (EEMD) with AR-MED to improve the deconvolution procedure. Firstly, using EEMD, it is possible to divide the defect signal into IMFs. Then the relevant modes that contain defect information are identified via the IMFs envelope spectrum. After that, AR-MED is applied to the reconstructed signal. Finally, the results obtained are compared with those obtained by deconvolving directly the original vibration signal using AR-MED. The experimental results show that incorporating EEMD improves the deconvolution process of AR-MED for bearing fault diagnosis.\",\"PeriodicalId\":447668,\"journal\":{\"name\":\"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAECCS56710.2023.10104709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCS56710.2023.10104709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自回归最小熵反卷积(AR-MED)方法具有增强故障脉冲的能力,是轴承故障诊断的一种有效方法。然而,当信号中含有高水平的噪声时,会严重影响AR-MED的反卷积性能。因此,早期缺陷信息很难从滚动轴承的振动信号中提取出来。本文旨在研究集成经验模态分解(EEMD)与AR-MED相结合的有效性,以改进反褶积过程。首先,利用EEMD,可以将缺陷信号划分为多个imf。然后通过IMFs包络谱识别包含缺陷信息的相关模式。然后,对重构信号进行AR-MED处理。最后,将得到的结果与利用AR-MED直接对原始振动信号进行反卷积得到的结果进行了比较。实验结果表明,加入EEMD改进了AR-MED的反卷积过程,用于轴承故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of the AR-MED Deconvolution Process using Ensemble Empirical Mode Decomposition in Bearing Fault Detection
Due to its ability to enhance the fault impulses,autoregressive minimum entropy deconvolution (AR-MED) is a useful method in bearing fault diagnosis. However, when the signal includes a high level of noise, it seriously affects the deconvolution performance of AR-MED. Therefore, early defect information is hardly extractable from the vibration signals of rolling bearings. This paper aims to study the effectiveness of integrating ensemble empirical mode decomposition (EEMD) with AR-MED to improve the deconvolution procedure. Firstly, using EEMD, it is possible to divide the defect signal into IMFs. Then the relevant modes that contain defect information are identified via the IMFs envelope spectrum. After that, AR-MED is applied to the reconstructed signal. Finally, the results obtained are compared with those obtained by deconvolving directly the original vibration signal using AR-MED. The experimental results show that incorporating EEMD improves the deconvolution process of AR-MED for bearing fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信