{"title":"在最佳时间内动态平面点定位","authors":"Yakov Nekrich","doi":"10.1145/3406325.3451100","DOIUrl":null,"url":null,"abstract":"In this paper we describe a fully-dynamic data structure that supports point location queries in a connected planar subdivision with n edges. Our data structure uses O(n) space, answers queries in O(logn) time, and supports updates in O(logn) time. Our solution is based on a data structure for vertical ray shooting queries that supports queries and updates in O(logn) time.","PeriodicalId":132752,"journal":{"name":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic planar point location in optimal time\",\"authors\":\"Yakov Nekrich\",\"doi\":\"10.1145/3406325.3451100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a fully-dynamic data structure that supports point location queries in a connected planar subdivision with n edges. Our data structure uses O(n) space, answers queries in O(logn) time, and supports updates in O(logn) time. Our solution is based on a data structure for vertical ray shooting queries that supports queries and updates in O(logn) time.\",\"PeriodicalId\":132752,\"journal\":{\"name\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406325.3451100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406325.3451100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we describe a fully-dynamic data structure that supports point location queries in a connected planar subdivision with n edges. Our data structure uses O(n) space, answers queries in O(logn) time, and supports updates in O(logn) time. Our solution is based on a data structure for vertical ray shooting queries that supports queries and updates in O(logn) time.