利用决策树中的群和聚类层次结构确定大数据复杂性

H. Erol, Recep Erol
{"title":"利用决策树中的群和聚类层次结构确定大数据复杂性","authors":"H. Erol, Recep Erol","doi":"10.1109/UBMK.2018.8566398","DOIUrl":null,"url":null,"abstract":"This study proposes a new method for determining the degree of big data complexity based on hierarchical structure of all groups and all clusters in big data. The new method for determining the degree of big data complexity uses the tree structure of hierarchical groups and clusters for attributes of big data. The number of groups is always greater than or equal to the number of clusters in big data. The levels and layers of groups and clusters are determined using the tree structure of big data. The grouping level is defined as the last level of leaves in the tree structure. The clustering level is defined as the first level of leaves in the tree structure. The degree of big data complexity is defined as the difference between the grouping level and clustering level. This study defines a new method for (i) determining the degree of big data complexity, (ii) finding the levels and layers of big data complexity and (iii) visualization of big data complexity.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining Big Data Complexity Using Hierarchical Structure of Groups and Clusters in Decision Tree\",\"authors\":\"H. Erol, Recep Erol\",\"doi\":\"10.1109/UBMK.2018.8566398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a new method for determining the degree of big data complexity based on hierarchical structure of all groups and all clusters in big data. The new method for determining the degree of big data complexity uses the tree structure of hierarchical groups and clusters for attributes of big data. The number of groups is always greater than or equal to the number of clusters in big data. The levels and layers of groups and clusters are determined using the tree structure of big data. The grouping level is defined as the last level of leaves in the tree structure. The clustering level is defined as the first level of leaves in the tree structure. The degree of big data complexity is defined as the difference between the grouping level and clustering level. This study defines a new method for (i) determining the degree of big data complexity, (ii) finding the levels and layers of big data complexity and (iii) visualization of big data complexity.\",\"PeriodicalId\":293249,\"journal\":{\"name\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2018.8566398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种基于大数据中所有组和所有簇的层次结构来确定大数据复杂程度的新方法。确定大数据复杂程度的新方法是利用大数据属性的分层分组和聚类的树状结构。在大数据中,组的数量总是大于或等于集群的数量。使用大数据的树形结构确定组和簇的层次。分组级别被定义为树形结构中的最后一层叶子。聚类级别被定义为树结构中叶子的第一级。大数据的复杂程度被定义为分组级别与集群级别之差。本研究定义了一种新的方法,用于(i)确定大数据复杂程度,(ii)发现大数据复杂性的层次和层次,以及(iii)大数据复杂性的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Big Data Complexity Using Hierarchical Structure of Groups and Clusters in Decision Tree
This study proposes a new method for determining the degree of big data complexity based on hierarchical structure of all groups and all clusters in big data. The new method for determining the degree of big data complexity uses the tree structure of hierarchical groups and clusters for attributes of big data. The number of groups is always greater than or equal to the number of clusters in big data. The levels and layers of groups and clusters are determined using the tree structure of big data. The grouping level is defined as the last level of leaves in the tree structure. The clustering level is defined as the first level of leaves in the tree structure. The degree of big data complexity is defined as the difference between the grouping level and clustering level. This study defines a new method for (i) determining the degree of big data complexity, (ii) finding the levels and layers of big data complexity and (iii) visualization of big data complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信