基于模糊方法的朴素贝叶斯分类

P. Radha Krishna, S. K. De
{"title":"基于模糊方法的朴素贝叶斯分类","authors":"P. Radha Krishna, S. K. De","doi":"10.1109/ICISIP.2005.1619413","DOIUrl":null,"url":null,"abstract":"Data mining is the quest for knowledge in databases to uncover previously unimagined relationships in the data. This paper generalizes Naive-Bayes classification technique using fuzzy set theory, when the available numerical probabilistic information is incomplete or partially correct. We consider a training dataset, where attribute values have certain similarities in nature. Though nothing can replace precise and complete probabilistic information, a useful classification system for data mining can be built even with imperfect data by introducing domain-dependent constraints. This observation is analyzed here based on fuzzy proximity relations for the domain of each attribute. The study shows that this approach is highly suitable for real-world applications, especially when databases contain uncertain information","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Naive-Bayes Classification using Fuzzy Approach\",\"authors\":\"P. Radha Krishna, S. K. De\",\"doi\":\"10.1109/ICISIP.2005.1619413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is the quest for knowledge in databases to uncover previously unimagined relationships in the data. This paper generalizes Naive-Bayes classification technique using fuzzy set theory, when the available numerical probabilistic information is incomplete or partially correct. We consider a training dataset, where attribute values have certain similarities in nature. Though nothing can replace precise and complete probabilistic information, a useful classification system for data mining can be built even with imperfect data by introducing domain-dependent constraints. This observation is analyzed here based on fuzzy proximity relations for the domain of each attribute. The study shows that this approach is highly suitable for real-world applications, especially when databases contain uncertain information\",\"PeriodicalId\":261916,\"journal\":{\"name\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIP.2005.1619413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据挖掘是对数据库知识的探索,以揭示数据中以前无法想象的关系。本文利用模糊集合理论推广了在可用数值概率信息不完全或部分正确的情况下的朴素贝叶斯分类技术。我们考虑一个训练数据集,其中属性值在本质上具有一定的相似性。虽然没有什么可以取代精确和完整的概率信息,但通过引入领域相关约束,即使使用不完美的数据也可以构建有用的数据挖掘分类系统。本文基于各属性域的模糊接近关系对观测结果进行了分析。研究表明,这种方法非常适合实际应用,特别是当数据库包含不确定信息时
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naive-Bayes Classification using Fuzzy Approach
Data mining is the quest for knowledge in databases to uncover previously unimagined relationships in the data. This paper generalizes Naive-Bayes classification technique using fuzzy set theory, when the available numerical probabilistic information is incomplete or partially correct. We consider a training dataset, where attribute values have certain similarities in nature. Though nothing can replace precise and complete probabilistic information, a useful classification system for data mining can be built even with imperfect data by introducing domain-dependent constraints. This observation is analyzed here based on fuzzy proximity relations for the domain of each attribute. The study shows that this approach is highly suitable for real-world applications, especially when databases contain uncertain information
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信