相位菲涅耳透镜阵列产生的多光镊

Ji Yunfeng, Xu Jie, Hu Kaikai, Lu Xuanhui
{"title":"相位菲涅耳透镜阵列产生的多光镊","authors":"Ji Yunfeng, Xu Jie, Hu Kaikai, Lu Xuanhui","doi":"10.1109/PGC.2012.6458081","DOIUrl":null,"url":null,"abstract":"We report a new method to generate multiple optical traps by using phase Fresnel lens (PFL) array. We also demonstrate its applications on manipulating micro particles in experiment. In our experiment, the PFL array is formed by a spatial light modulation. The multiple beams generated by PFL array are directed into the inverted microscope and are highly focused in the focus plane of the objective. The 1.4μm polystyrene spheres are trapped in the experiment. Each of the trapped particles can be controlled by changing the position of the corresponding Fresnel zone plate in the array. Comparing with the hologram methods, which is the most popular method in generating optical trap arrays, the PFL array method has increased the trapping efficiency. Because the power of the useless zero-order light in the hologram method can be used in PFL array method. Besides, each of the trapped particles can be controlled separately in PFL array method, which makes micromanipulation more conveniently.","PeriodicalId":158783,"journal":{"name":"2012 Photonics Global Conference (PGC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple optical tweezers generated from phase Fresnel lens array\",\"authors\":\"Ji Yunfeng, Xu Jie, Hu Kaikai, Lu Xuanhui\",\"doi\":\"10.1109/PGC.2012.6458081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a new method to generate multiple optical traps by using phase Fresnel lens (PFL) array. We also demonstrate its applications on manipulating micro particles in experiment. In our experiment, the PFL array is formed by a spatial light modulation. The multiple beams generated by PFL array are directed into the inverted microscope and are highly focused in the focus plane of the objective. The 1.4μm polystyrene spheres are trapped in the experiment. Each of the trapped particles can be controlled by changing the position of the corresponding Fresnel zone plate in the array. Comparing with the hologram methods, which is the most popular method in generating optical trap arrays, the PFL array method has increased the trapping efficiency. Because the power of the useless zero-order light in the hologram method can be used in PFL array method. Besides, each of the trapped particles can be controlled separately in PFL array method, which makes micromanipulation more conveniently.\",\"PeriodicalId\":158783,\"journal\":{\"name\":\"2012 Photonics Global Conference (PGC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Photonics Global Conference (PGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PGC.2012.6458081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Photonics Global Conference (PGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PGC.2012.6458081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种利用相位菲涅耳透镜阵列产生多重光阱的新方法。并在实验中演示了其在微粒子操纵上的应用。在我们的实验中,PFL阵列由空间光调制形成。PFL阵列产生的多束光束被引导到倒置显微镜内,并在物镜聚焦平面内高度聚焦。实验中捕获了1.4μm聚苯乙烯球。每个被捕获的粒子都可以通过改变阵列中相应菲涅耳带板的位置来控制。与目前最常用的光阱阵列生成方法全息法相比,PFL阵列法提高了捕获效率。由于全息法中无用的零阶光的功率可以用于PFL阵列法。此外,PFL阵列可以对捕获的每个粒子进行单独控制,使微操作更加方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple optical tweezers generated from phase Fresnel lens array
We report a new method to generate multiple optical traps by using phase Fresnel lens (PFL) array. We also demonstrate its applications on manipulating micro particles in experiment. In our experiment, the PFL array is formed by a spatial light modulation. The multiple beams generated by PFL array are directed into the inverted microscope and are highly focused in the focus plane of the objective. The 1.4μm polystyrene spheres are trapped in the experiment. Each of the trapped particles can be controlled by changing the position of the corresponding Fresnel zone plate in the array. Comparing with the hologram methods, which is the most popular method in generating optical trap arrays, the PFL array method has increased the trapping efficiency. Because the power of the useless zero-order light in the hologram method can be used in PFL array method. Besides, each of the trapped particles can be controlled separately in PFL array method, which makes micromanipulation more conveniently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信