基于Elman神经网络的电热水器控制策略的DSM方法

Y. M. Atwa, E. El-Saadany, M. Salama
{"title":"基于Elman神经网络的电热水器控制策略的DSM方法","authors":"Y. M. Atwa, E. El-Saadany, M. Salama","doi":"10.1109/EPC.2007.4520362","DOIUrl":null,"url":null,"abstract":"This paper describes an artificial neural network based demand-side management (DSM) strategy to shift the peaks of the average residential electrical water heater power demand profile from periods of high demand to off peak periods. The DSM strategy is achieved by dividing the water heaters connected to certain distribution feeder into blocks and controlling each block by a different individual neural network controller. The proposed control schemes will consider an adequate representation of the customers' specifications and preferences. Simulation results are presented to show the effectiveness of the proposed DSM strategy to shift the average electrical water heater peak demand to off peak periods and to level the utility distribution demand profile.","PeriodicalId":196861,"journal":{"name":"2007 IEEE Canada Electrical Power Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DSM Approach for Water Heater Control Strategy Utilizing Elman Neural Network\",\"authors\":\"Y. M. Atwa, E. El-Saadany, M. Salama\",\"doi\":\"10.1109/EPC.2007.4520362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an artificial neural network based demand-side management (DSM) strategy to shift the peaks of the average residential electrical water heater power demand profile from periods of high demand to off peak periods. The DSM strategy is achieved by dividing the water heaters connected to certain distribution feeder into blocks and controlling each block by a different individual neural network controller. The proposed control schemes will consider an adequate representation of the customers' specifications and preferences. Simulation results are presented to show the effectiveness of the proposed DSM strategy to shift the average electrical water heater peak demand to off peak periods and to level the utility distribution demand profile.\",\"PeriodicalId\":196861,\"journal\":{\"name\":\"2007 IEEE Canada Electrical Power Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Canada Electrical Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPC.2007.4520362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Canada Electrical Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPC.2007.4520362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种基于人工神经网络的需求侧管理策略,将住宅电热水器平均电力需求曲线的峰值从高需求期转移到非高峰期。用电需求侧管理策略是通过将连接到某配电馈线的热水器划分成若干块,并通过不同的单个神经网络控制器对每个块进行控制来实现的。建议的控制方案将考虑充分代表客户的规格和偏好。仿真结果表明,所提出的需求侧管理策略能够有效地将电热水器的平均高峰需求转移到非高峰时段,并使公用事业分配需求曲线保持平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSM Approach for Water Heater Control Strategy Utilizing Elman Neural Network
This paper describes an artificial neural network based demand-side management (DSM) strategy to shift the peaks of the average residential electrical water heater power demand profile from periods of high demand to off peak periods. The DSM strategy is achieved by dividing the water heaters connected to certain distribution feeder into blocks and controlling each block by a different individual neural network controller. The proposed control schemes will consider an adequate representation of the customers' specifications and preferences. Simulation results are presented to show the effectiveness of the proposed DSM strategy to shift the average electrical water heater peak demand to off peak periods and to level the utility distribution demand profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信