Gross-Pitaevskii方程中量子湍流和涡旋重连的量子点阵气体算法

G. Vahala, J. Yepez, L. Vahala
{"title":"Gross-Pitaevskii方程中量子湍流和涡旋重连的量子点阵气体算法","authors":"G. Vahala, J. Yepez, L. Vahala","doi":"10.1117/12.777722","DOIUrl":null,"url":null,"abstract":"The ground state wave function for a Bose Einstein condensate is well described by the Gross-Pitaevskii equation. A Type-II quantum algorithm is devised that is ideally parallelized even on a classical computer. Only 2 qubits are required per spatial node. With unitary local collisions, streaming of entangled states and a spatially inhomogeneous unitary gauge rotation one recovers the Gross-Pitaevskii equation. Quantum vortex reconnection is simulated - even without any viscosity or resistivity (which are needed in classical vortex reconnection).","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum lattice gas algorithm for quantum turbulence and vortex reconnection in the Gross-Pitaevskii equation\",\"authors\":\"G. Vahala, J. Yepez, L. Vahala\",\"doi\":\"10.1117/12.777722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ground state wave function for a Bose Einstein condensate is well described by the Gross-Pitaevskii equation. A Type-II quantum algorithm is devised that is ideally parallelized even on a classical computer. Only 2 qubits are required per spatial node. With unitary local collisions, streaming of entangled states and a spatially inhomogeneous unitary gauge rotation one recovers the Gross-Pitaevskii equation. Quantum vortex reconnection is simulated - even without any viscosity or resistivity (which are needed in classical vortex reconnection).\",\"PeriodicalId\":133868,\"journal\":{\"name\":\"SPIE Defense + Commercial Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.777722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

玻色-爱因斯坦凝聚体的基态波函数可以用Gross-Pitaevskii方程很好地描述。设计了一种ii型量子算法,即使在经典计算机上也能实现理想的并行化。每个空间节点只需要2个量子比特。在酉局部碰撞、纠缠态流和空间非齐次酉规范旋转条件下,可以恢复Gross-Pitaevskii方程。模拟了量子涡旋重联-即使没有任何粘度或电阻率(在经典涡旋重联中需要)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum lattice gas algorithm for quantum turbulence and vortex reconnection in the Gross-Pitaevskii equation
The ground state wave function for a Bose Einstein condensate is well described by the Gross-Pitaevskii equation. A Type-II quantum algorithm is devised that is ideally parallelized even on a classical computer. Only 2 qubits are required per spatial node. With unitary local collisions, streaming of entangled states and a spatially inhomogeneous unitary gauge rotation one recovers the Gross-Pitaevskii equation. Quantum vortex reconnection is simulated - even without any viscosity or resistivity (which are needed in classical vortex reconnection).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信