嵌入式智能入侵检测:基于行为的方法

Adrian P. Lauf, R. Peters, W. H. Robinson
{"title":"嵌入式智能入侵检测:基于行为的方法","authors":"Adrian P. Lauf, R. Peters, W. H. Robinson","doi":"10.1109/AINAW.2007.169","DOIUrl":null,"url":null,"abstract":"This paper describes the development of an intelligent intrusion detection system for use within an embedded device network consisting of interconnected agents. Integral behavior types are categorized by focusing primarily on inter-device requests and actions rather than at a packet or link level. Machine learning techniques use these observed behavioral actions to track devices which deviate from normal protocol. Deviant behavior can be analyzed and flagged, enabling interconnected agents to identify an intruder based upon the historical distribution of behavioral data that is accumulated about the possible deviant agent. Simulation results from the prototype system correlate detection accuracy with a tunable input tolerance factor.","PeriodicalId":338799,"journal":{"name":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Embedded Intelligent Intrusion Detection: A Behavior-Based Approach\",\"authors\":\"Adrian P. Lauf, R. Peters, W. H. Robinson\",\"doi\":\"10.1109/AINAW.2007.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of an intelligent intrusion detection system for use within an embedded device network consisting of interconnected agents. Integral behavior types are categorized by focusing primarily on inter-device requests and actions rather than at a packet or link level. Machine learning techniques use these observed behavioral actions to track devices which deviate from normal protocol. Deviant behavior can be analyzed and flagged, enabling interconnected agents to identify an intruder based upon the historical distribution of behavioral data that is accumulated about the possible deviant agent. Simulation results from the prototype system correlate detection accuracy with a tunable input tolerance factor.\",\"PeriodicalId\":338799,\"journal\":{\"name\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINAW.2007.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINAW.2007.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了一种用于由相互连接的代理组成的嵌入式设备网络的智能入侵检测系统的开发。整体行为类型主要关注设备间的请求和操作,而不是数据包或链路级别。机器学习技术使用这些观察到的行为动作来跟踪偏离正常协议的设备。可以分析和标记异常行为,使相互连接的代理能够根据关于可能的异常代理积累的行为数据的历史分布来识别入侵者。原型系统的仿真结果将检测精度与可调谐的输入公差因子相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Intelligent Intrusion Detection: A Behavior-Based Approach
This paper describes the development of an intelligent intrusion detection system for use within an embedded device network consisting of interconnected agents. Integral behavior types are categorized by focusing primarily on inter-device requests and actions rather than at a packet or link level. Machine learning techniques use these observed behavioral actions to track devices which deviate from normal protocol. Deviant behavior can be analyzed and flagged, enabling interconnected agents to identify an intruder based upon the historical distribution of behavioral data that is accumulated about the possible deviant agent. Simulation results from the prototype system correlate detection accuracy with a tunable input tolerance factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信