{"title":"微尺度拉伸疲劳试验系统的研制","authors":"N. Hayakawa, Kensuke Tsuchiya, T. Kakiuchi","doi":"10.1109/NEMS.2016.7758252","DOIUrl":null,"url":null,"abstract":"We developed a micro-scale tensile fatigue test system, which can test specimens fabricated from bulk materials. In this system, a probe is attached to a micro-manipulator and the micro-manipulator enables accurate initial positioning and applying tensile stress. In this paper, we present the system and the result of tensile tests and tensile fatigue tests on the specimens which are made of coarse-grained magnesium alloy, AZ31. The tensile tests suggests that the system can apply accurate tensile stress to the micro-scale specimens and the tensile strength of micro-scale structures is much stronger than that of bulk materials. And the tensile fatigue test indicates that the system can apply intended cyclic tensile stress.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of micro-scale tensile fatigue test system\",\"authors\":\"N. Hayakawa, Kensuke Tsuchiya, T. Kakiuchi\",\"doi\":\"10.1109/NEMS.2016.7758252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a micro-scale tensile fatigue test system, which can test specimens fabricated from bulk materials. In this system, a probe is attached to a micro-manipulator and the micro-manipulator enables accurate initial positioning and applying tensile stress. In this paper, we present the system and the result of tensile tests and tensile fatigue tests on the specimens which are made of coarse-grained magnesium alloy, AZ31. The tensile tests suggests that the system can apply accurate tensile stress to the micro-scale specimens and the tensile strength of micro-scale structures is much stronger than that of bulk materials. And the tensile fatigue test indicates that the system can apply intended cyclic tensile stress.\",\"PeriodicalId\":150449,\"journal\":{\"name\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2016.7758252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of micro-scale tensile fatigue test system
We developed a micro-scale tensile fatigue test system, which can test specimens fabricated from bulk materials. In this system, a probe is attached to a micro-manipulator and the micro-manipulator enables accurate initial positioning and applying tensile stress. In this paper, we present the system and the result of tensile tests and tensile fatigue tests on the specimens which are made of coarse-grained magnesium alloy, AZ31. The tensile tests suggests that the system can apply accurate tensile stress to the micro-scale specimens and the tensile strength of micro-scale structures is much stronger than that of bulk materials. And the tensile fatigue test indicates that the system can apply intended cyclic tensile stress.