人类互动识别的层次模型

Yu Kong, Yunde Jia
{"title":"人类互动识别的层次模型","authors":"Yu Kong, Yunde Jia","doi":"10.1109/ICME.2012.67","DOIUrl":null,"url":null,"abstract":"Recognizing human interactions is a challenging task due to partially occluded body parts and motion ambiguities in interactions. We observe that the interdependencies existing at both action level and body part level greatly help disambiguate similar individual movements and facilitate human interaction recognition. In this paper, we propose a novel hierarchical model to capture such interdependencies for recognizing interactions of two persons. We model the action of each person by a large-scale global feature and several body part features. Two types of contextual information are exploited in our model to capture the implicit and complex interdependencies between interaction class, the action classes of two persons and the labels of persons' body parts. We build a challenging human interaction dataset to test our method. Results show that our model is quite effective in recognizing human interactions.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Hierarchical Model for Human Interaction Recognition\",\"authors\":\"Yu Kong, Yunde Jia\",\"doi\":\"10.1109/ICME.2012.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing human interactions is a challenging task due to partially occluded body parts and motion ambiguities in interactions. We observe that the interdependencies existing at both action level and body part level greatly help disambiguate similar individual movements and facilitate human interaction recognition. In this paper, we propose a novel hierarchical model to capture such interdependencies for recognizing interactions of two persons. We model the action of each person by a large-scale global feature and several body part features. Two types of contextual information are exploited in our model to capture the implicit and complex interdependencies between interaction class, the action classes of two persons and the labels of persons' body parts. We build a challenging human interaction dataset to test our method. Results show that our model is quite effective in recognizing human interactions.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于部分遮挡的身体部位和相互作用中的运动模糊,识别人类相互作用是一项具有挑战性的任务。我们观察到,在动作水平和身体部位水平上存在的相互依赖性极大地帮助消除了相似的个体动作的歧义,并促进了人类互动的识别。在本文中,我们提出了一个新的层次模型来捕捉这种相互依赖关系,以识别两个人的互动。我们通过一个大规模的全局特征和几个身体部位特征来建模每个人的动作。我们的模型利用了两种类型的上下文信息来捕捉交互类、两个人的动作类和人的身体部位标签之间隐含的和复杂的相互依赖关系。我们构建了一个具有挑战性的人类交互数据集来测试我们的方法。结果表明,我们的模型在识别人类互动方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchical Model for Human Interaction Recognition
Recognizing human interactions is a challenging task due to partially occluded body parts and motion ambiguities in interactions. We observe that the interdependencies existing at both action level and body part level greatly help disambiguate similar individual movements and facilitate human interaction recognition. In this paper, we propose a novel hierarchical model to capture such interdependencies for recognizing interactions of two persons. We model the action of each person by a large-scale global feature and several body part features. Two types of contextual information are exploited in our model to capture the implicit and complex interdependencies between interaction class, the action classes of two persons and the labels of persons' body parts. We build a challenging human interaction dataset to test our method. Results show that our model is quite effective in recognizing human interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信