{"title":"基于k均值级联元启发式算法的卫星图像自动正校正","authors":"Oussama Mezouar, F. Meskine, I. Boukerch","doi":"10.14358/pers.22-00113r2","DOIUrl":null,"url":null,"abstract":"Orthorectification of high-resolution satellite images using a terrain- dependent rational function model (RFM) is a difficult task requiring a well-distributed set of ground control points (GCPs), which is often time-consuming and costly operation. Further, RFM is sensitive to over-parameterization\n due to its many coefficients, which have no physical meaning. Optimization-based meta-heuristic algorithms ap- pear to be an efficient solution to overcome these limitations. This pa- per presents a complete automated RFM terrain-dependent orthorec- tification for satellite images. The proposed\n method has two parts; the first part suggests automating the GCP extraction by combing Scale- Invariant Feature Transform and Speeded Up Robust Features algo- rithms; and the second part introduces the cascaded meta-heuristic al- gorithm using genetic algorithms and particle swarm optimization.\n In this stage, a modified K-means clustering selection technique was used to support the proposed algorithm for finding the best combinations of GCPs and RFM coefficients. The obtained results are promising in terms of accuracy and stability compared to other literature methods.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Satellite Images Orthorectification Using K–Means Based Cascaded Meta-Heuristic Algorithm\",\"authors\":\"Oussama Mezouar, F. Meskine, I. Boukerch\",\"doi\":\"10.14358/pers.22-00113r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthorectification of high-resolution satellite images using a terrain- dependent rational function model (RFM) is a difficult task requiring a well-distributed set of ground control points (GCPs), which is often time-consuming and costly operation. Further, RFM is sensitive to over-parameterization\\n due to its many coefficients, which have no physical meaning. Optimization-based meta-heuristic algorithms ap- pear to be an efficient solution to overcome these limitations. This pa- per presents a complete automated RFM terrain-dependent orthorec- tification for satellite images. The proposed\\n method has two parts; the first part suggests automating the GCP extraction by combing Scale- Invariant Feature Transform and Speeded Up Robust Features algo- rithms; and the second part introduces the cascaded meta-heuristic al- gorithm using genetic algorithms and particle swarm optimization.\\n In this stage, a modified K-means clustering selection technique was used to support the proposed algorithm for finding the best combinations of GCPs and RFM coefficients. The obtained results are promising in terms of accuracy and stability compared to other literature methods.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.22-00113r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00113r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Satellite Images Orthorectification Using K–Means Based Cascaded Meta-Heuristic Algorithm
Orthorectification of high-resolution satellite images using a terrain- dependent rational function model (RFM) is a difficult task requiring a well-distributed set of ground control points (GCPs), which is often time-consuming and costly operation. Further, RFM is sensitive to over-parameterization
due to its many coefficients, which have no physical meaning. Optimization-based meta-heuristic algorithms ap- pear to be an efficient solution to overcome these limitations. This pa- per presents a complete automated RFM terrain-dependent orthorec- tification for satellite images. The proposed
method has two parts; the first part suggests automating the GCP extraction by combing Scale- Invariant Feature Transform and Speeded Up Robust Features algo- rithms; and the second part introduces the cascaded meta-heuristic al- gorithm using genetic algorithms and particle swarm optimization.
In this stage, a modified K-means clustering selection technique was used to support the proposed algorithm for finding the best combinations of GCPs and RFM coefficients. The obtained results are promising in terms of accuracy and stability compared to other literature methods.