{"title":"研究使用机器学习方法预测科学分支发展的可能性","authors":"Н.И. Морозова, А.Н. Берёза, Н.В. Берёза","doi":"10.36622/vstu.2022.88.2.016","DOIUrl":null,"url":null,"abstract":"Статья посвящена определению принципа использования библиометрических показателей при создании подсистемы прогнозирования публикационной активности с использованием интеллектуальных методов. Показано, что наиболее оптимальным является метод машинного обучения DecisionTree.\n The article is devoted to determining the principle of using bibliometric indicators when creating a subsystem for predicting publication activity using intelligent methods. Key bibliometric indicators and examples of calculations for three areas within the technical scientific direction are presented: neural networks, genetic algorithms and data science. Machine learning methods for forecasting under uncertainty are analyzed. The choice of tools for the development of a mathematical model of the decision-making process in the field of scientific research has been made. It is shown that the DecisionTree machine learning method is the most optimal. The methodological apparatus is described, a training sample is created, and a predictive mathematical model is proposed that allows one to speak with sufficient accuracy about the number of future publications within each selected scientific group.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF THE POSSIBILITY OF USING MACHINE LEARNING METHODS TO PREDICT THE DEVELOPMENT OF BRANCHES OF SCIENCE\",\"authors\":\"Н.И. Морозова, А.Н. Берёза, Н.В. Берёза\",\"doi\":\"10.36622/vstu.2022.88.2.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Статья посвящена определению принципа использования библиометрических показателей при создании подсистемы прогнозирования публикационной активности с использованием интеллектуальных методов. Показано, что наиболее оптимальным является метод машинного обучения DecisionTree.\\n The article is devoted to determining the principle of using bibliometric indicators when creating a subsystem for predicting publication activity using intelligent methods. Key bibliometric indicators and examples of calculations for three areas within the technical scientific direction are presented: neural networks, genetic algorithms and data science. Machine learning methods for forecasting under uncertainty are analyzed. The choice of tools for the development of a mathematical model of the decision-making process in the field of scientific research has been made. It is shown that the DecisionTree machine learning method is the most optimal. The methodological apparatus is described, a training sample is created, and a predictive mathematical model is proposed that allows one to speak with sufficient accuracy about the number of future publications within each selected scientific group.\",\"PeriodicalId\":331043,\"journal\":{\"name\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36622/vstu.2022.88.2.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2022.88.2.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STUDY OF THE POSSIBILITY OF USING MACHINE LEARNING METHODS TO PREDICT THE DEVELOPMENT OF BRANCHES OF SCIENCE
Статья посвящена определению принципа использования библиометрических показателей при создании подсистемы прогнозирования публикационной активности с использованием интеллектуальных методов. Показано, что наиболее оптимальным является метод машинного обучения DecisionTree.
The article is devoted to determining the principle of using bibliometric indicators when creating a subsystem for predicting publication activity using intelligent methods. Key bibliometric indicators and examples of calculations for three areas within the technical scientific direction are presented: neural networks, genetic algorithms and data science. Machine learning methods for forecasting under uncertainty are analyzed. The choice of tools for the development of a mathematical model of the decision-making process in the field of scientific research has been made. It is shown that the DecisionTree machine learning method is the most optimal. The methodological apparatus is described, a training sample is created, and a predictive mathematical model is proposed that allows one to speak with sufficient accuracy about the number of future publications within each selected scientific group.