Banach空间中绝对收敛良序级数的重排

Vedran vCavci'c, Marko Doko, M. Horvat
{"title":"Banach空间中绝对收敛良序级数的重排","authors":"Vedran vCavci'c, Marko Doko, M. Horvat","doi":"10.21857/yq32oh4qd9","DOIUrl":null,"url":null,"abstract":"Reordering the terms of a series is a useful mathematical device, and much is known about when it can be done without affecting the convergence or the sum of the series. For example, if a series of real numbers absolutely converges, we can add the even-indexed and odd-indexed terms separately, or arrange the terms in an infinite two-dimensional table and first compute the sum of each column. The possibility of even more intricate re-orderings prompts us to find a general underlying principle. We identify such a principle in the setting of Banach spaces, where we consider well-ordered series with indices beyond {\\omega}, but strictly under {\\omega}_1 . We prove that for every absolutely convergent well-ordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearranging absolutely covergent well-ordered series in Banach spaces\",\"authors\":\"Vedran vCavci'c, Marko Doko, M. Horvat\",\"doi\":\"10.21857/yq32oh4qd9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reordering the terms of a series is a useful mathematical device, and much is known about when it can be done without affecting the convergence or the sum of the series. For example, if a series of real numbers absolutely converges, we can add the even-indexed and odd-indexed terms separately, or arrange the terms in an infinite two-dimensional table and first compute the sum of each column. The possibility of even more intricate re-orderings prompts us to find a general underlying principle. We identify such a principle in the setting of Banach spaces, where we consider well-ordered series with indices beyond {\\\\omega}, but strictly under {\\\\omega}_1 . We prove that for every absolutely convergent well-ordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.\",\"PeriodicalId\":269525,\"journal\":{\"name\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21857/yq32oh4qd9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/yq32oh4qd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对级数的项进行重新排序是一种有用的数学方法,对于何时可以在不影响级数的收敛性或总和的情况下进行重新排序,我们知道得很多。例如,如果一组实数绝对收敛,我们可以将偶数索引项和奇数索引项分别相加,或者将这些项排列在一个无限的二维表中,先计算每列的和。更复杂的重新排序的可能性促使我们找到一个普遍的基本原则。我们在巴拿赫空间中确定了这样一个原理,在巴拿赫空间中,我们考虑指标超过{\ ω}但严格小于{\ ω}_1的良序级数。证明了对于每一个以可数序数为索引的绝对收敛良序级数,如果该级数按照任意可数序数重新排列,则该级数的绝对收敛性和和保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearranging absolutely covergent well-ordered series in Banach spaces
Reordering the terms of a series is a useful mathematical device, and much is known about when it can be done without affecting the convergence or the sum of the series. For example, if a series of real numbers absolutely converges, we can add the even-indexed and odd-indexed terms separately, or arrange the terms in an infinite two-dimensional table and first compute the sum of each column. The possibility of even more intricate re-orderings prompts us to find a general underlying principle. We identify such a principle in the setting of Banach spaces, where we consider well-ordered series with indices beyond {\omega}, but strictly under {\omega}_1 . We prove that for every absolutely convergent well-ordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信