基于小波变换和人工神经网络的超声图像识别

C. Juarez-Landin, V. Ponomaryov, J. L. Sanchez-Ramirez
{"title":"基于小波变换和人工神经网络的超声图像识别","authors":"C. Juarez-Landin, V. Ponomaryov, J. L. Sanchez-Ramirez","doi":"10.1109/CAMAP.2005.1574212","DOIUrl":null,"url":null,"abstract":"It is presented the development of two methods for recognition of ultrasound images (US) using artificial neural networks (ANN). In the first method, a neural network of the backpropagation type was used, and the second one it has been implemented a stage of extraction of characteristics applying the wavelet transform before ANN using. The experimental results have shown the advantages and drawbacks of each a method","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of ultrasound images using wavelet transform and artificial neural networks\",\"authors\":\"C. Juarez-Landin, V. Ponomaryov, J. L. Sanchez-Ramirez\",\"doi\":\"10.1109/CAMAP.2005.1574212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is presented the development of two methods for recognition of ultrasound images (US) using artificial neural networks (ANN). In the first method, a neural network of the backpropagation type was used, and the second one it has been implemented a stage of extraction of characteristics applying the wavelet transform before ANN using. The experimental results have shown the advantages and drawbacks of each a method\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"418 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了两种基于人工神经网络的超声图像识别方法的发展。第一种方法采用反向传播型神经网络,第二种方法在采用人工神经网络之前,先进行小波变换提取特征。实验结果显示了每种方法的优缺点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of ultrasound images using wavelet transform and artificial neural networks
It is presented the development of two methods for recognition of ultrasound images (US) using artificial neural networks (ANN). In the first method, a neural network of the backpropagation type was used, and the second one it has been implemented a stage of extraction of characteristics applying the wavelet transform before ANN using. The experimental results have shown the advantages and drawbacks of each a method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信