具有有限映射类轨道的SL2()曲面群表示

I. Biswas, Subhojoy Gupta, Mahan Mj, J. Whang
{"title":"具有有限映射类轨道的SL2()曲面群表示","authors":"I. Biswas, Subhojoy Gupta, Mahan Mj, J. Whang","doi":"10.2140/gt.2022.26.679","DOIUrl":null,"url":null,"abstract":". Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of the surface. For surfaces of genus at least two, such orbits correspond to homomorphisms with finite image. For genus one, they correspond to the finite or special dihedral representations. We also obtain an analogous result for bounded orbits in the moduli space.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Surface group representations in SL2(ℂ) with\\nfinite mapping class orbits\",\"authors\":\"I. Biswas, Subhojoy Gupta, Mahan Mj, J. Whang\",\"doi\":\"10.2140/gt.2022.26.679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of the surface. For surfaces of genus at least two, such orbits correspond to homomorphisms with finite image. For genus one, they correspond to the finite or special dihedral representations. We also obtain an analogous result for bounded orbits in the moduli space.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

。给定一个具有有限多个点的正属定向曲面,我们对映射类群作用在该曲面基群的半简单复特殊线性二维表示的模空间上的有限轨道进行了分类。对于至少有两个属的曲面,这样的轨道对应于具有有限象的同态。对于属1,它们对应于有限的或特殊的二面体表示。对于模空间中的有界轨道,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface group representations in SL2(ℂ) with finite mapping class orbits
. Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of the surface. For surfaces of genus at least two, such orbits correspond to homomorphisms with finite image. For genus one, they correspond to the finite or special dihedral representations. We also obtain an analogous result for bounded orbits in the moduli space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信