Omar Portillo-Dominguez, Miao Wang, John Murphy, D. Magoni, A. O. Portillo-Dominguez
{"title":"高保证Java分布式系统的自适应gc感知负载均衡策略","authors":"Omar Portillo-Dominguez, Miao Wang, John Murphy, D. Magoni, A. O. Portillo-Dominguez","doi":"10.1109/HASE.2015.19","DOIUrl":null,"url":null,"abstract":"High-Assurance applications usually require achieving fast response time and high throughput on a constant basis. To fulfil these stringent quality of service requirements, these applications are commonly deployed in clustered instances. However, how to effectively manage these clusters has become a new challenge. A common approach is to deploy a front-end load balancer to optimise the workload distribution among the clustered applications. Thus, researchers have been studying how to improve the effectiveness of a load balancer. Our previous work presented a novel load balancing strategy which improves the performance of a distributed Java system by avoiding the performance impacts of Major Garbage Collection, which is a common cause of performance degradation in Java applications. However, as that strategy used a static configuration, it could only improve the performance of a system if the strategy was configured with domain expert knowledge. This paper extends our previous work by presenting an adaptive GC-aware load balancing strategy which self-configures according to the GC characteristics of the application. Our results have shown that this adaptive strategy can achieve higher throughput and lower response time, compared to the round-robin load balancing, while also avoiding the burden of manual tuning.","PeriodicalId":248645,"journal":{"name":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive GC-Aware Load Balancing Strategy for High-Assurance Java Distributed Systems\",\"authors\":\"Omar Portillo-Dominguez, Miao Wang, John Murphy, D. Magoni, A. O. Portillo-Dominguez\",\"doi\":\"10.1109/HASE.2015.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-Assurance applications usually require achieving fast response time and high throughput on a constant basis. To fulfil these stringent quality of service requirements, these applications are commonly deployed in clustered instances. However, how to effectively manage these clusters has become a new challenge. A common approach is to deploy a front-end load balancer to optimise the workload distribution among the clustered applications. Thus, researchers have been studying how to improve the effectiveness of a load balancer. Our previous work presented a novel load balancing strategy which improves the performance of a distributed Java system by avoiding the performance impacts of Major Garbage Collection, which is a common cause of performance degradation in Java applications. However, as that strategy used a static configuration, it could only improve the performance of a system if the strategy was configured with domain expert knowledge. This paper extends our previous work by presenting an adaptive GC-aware load balancing strategy which self-configures according to the GC characteristics of the application. Our results have shown that this adaptive strategy can achieve higher throughput and lower response time, compared to the round-robin load balancing, while also avoiding the burden of manual tuning.\",\"PeriodicalId\":248645,\"journal\":{\"name\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.2015.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.2015.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive GC-Aware Load Balancing Strategy for High-Assurance Java Distributed Systems
High-Assurance applications usually require achieving fast response time and high throughput on a constant basis. To fulfil these stringent quality of service requirements, these applications are commonly deployed in clustered instances. However, how to effectively manage these clusters has become a new challenge. A common approach is to deploy a front-end load balancer to optimise the workload distribution among the clustered applications. Thus, researchers have been studying how to improve the effectiveness of a load balancer. Our previous work presented a novel load balancing strategy which improves the performance of a distributed Java system by avoiding the performance impacts of Major Garbage Collection, which is a common cause of performance degradation in Java applications. However, as that strategy used a static configuration, it could only improve the performance of a system if the strategy was configured with domain expert knowledge. This paper extends our previous work by presenting an adaptive GC-aware load balancing strategy which self-configures according to the GC characteristics of the application. Our results have shown that this adaptive strategy can achieve higher throughput and lower response time, compared to the round-robin load balancing, while also avoiding the burden of manual tuning.