利用堆叠神经网络最大化客户生命周期价值:保险行业应用

Gaddiel Desirena, Armando Diaz, Jalil Desirena, Ismael Moreno, Daniel Garcia
{"title":"利用堆叠神经网络最大化客户生命周期价值:保险行业应用","authors":"Gaddiel Desirena, Armando Diaz, Jalil Desirena, Ismael Moreno, Daniel Garcia","doi":"10.1109/ICMLA.2019.00101","DOIUrl":null,"url":null,"abstract":"This paper proposes a recommender system based on two-stage neural network architecture that maximizes Customer Lifetime Value (CLV). The Stage-I neural network uses a self-attention mechanism and a Collaborative Metric Learning (CML) to generate product recommendations. The Stage-II neural network uses a neural network-based survival analysis to infer insurance product recommendations that maximize customer lifetime. The proposed stacked neural network model can be used as a generative model to explore different cross-sell scenarios. The applicability of the proposed recommendation system is evaluated using transactional data from an Australian insurance company. We validated our results against a state of the art self-attention recommendation system, successfully extending its functionality to include lifetime value.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Maximizing Customer Lifetime Value using Stacked Neural Networks: An Insurance Industry Application\",\"authors\":\"Gaddiel Desirena, Armando Diaz, Jalil Desirena, Ismael Moreno, Daniel Garcia\",\"doi\":\"10.1109/ICMLA.2019.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a recommender system based on two-stage neural network architecture that maximizes Customer Lifetime Value (CLV). The Stage-I neural network uses a self-attention mechanism and a Collaborative Metric Learning (CML) to generate product recommendations. The Stage-II neural network uses a neural network-based survival analysis to infer insurance product recommendations that maximize customer lifetime. The proposed stacked neural network model can be used as a generative model to explore different cross-sell scenarios. The applicability of the proposed recommendation system is evaluated using transactional data from an Australian insurance company. We validated our results against a state of the art self-attention recommendation system, successfully extending its functionality to include lifetime value.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于两阶段神经网络架构的客户终身价值最大化的推荐系统。第一阶段神经网络使用自注意机制和协同度量学习(CML)来生成产品推荐。第二阶段神经网络使用基于神经网络的生存分析来推断最大化客户生命周期的保险产品建议。所提出的堆叠神经网络模型可以作为一个生成模型来探索不同的交叉销售场景。使用来自澳大利亚保险公司的交易数据来评估所提出的推荐系统的适用性。我们用最先进的自我关注推荐系统验证了我们的结果,成功地扩展了它的功能,包括终身价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing Customer Lifetime Value using Stacked Neural Networks: An Insurance Industry Application
This paper proposes a recommender system based on two-stage neural network architecture that maximizes Customer Lifetime Value (CLV). The Stage-I neural network uses a self-attention mechanism and a Collaborative Metric Learning (CML) to generate product recommendations. The Stage-II neural network uses a neural network-based survival analysis to infer insurance product recommendations that maximize customer lifetime. The proposed stacked neural network model can be used as a generative model to explore different cross-sell scenarios. The applicability of the proposed recommendation system is evaluated using transactional data from an Australian insurance company. We validated our results against a state of the art self-attention recommendation system, successfully extending its functionality to include lifetime value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信