无限维时滞分数阶离散系统的可控性与最小能量控制问题

J. Klamka
{"title":"无限维时滞分数阶离散系统的可控性与最小能量控制问题","authors":"J. Klamka","doi":"10.1109/ACIIDS.2009.53","DOIUrl":null,"url":null,"abstract":"The minimum energy control problem of infinite-dimensional fractional-discrete time linear systems both without delays and with delays in control is discussed. Using methods taken from functional analysis necessary and sufficient conditions for the exact controllablity of the system are established. Next, assuming exact controllability analytical solution of the minimum energy control of the infinite-dimensional fractional discrete-time systems is given. A procedure for computation of the optimal sequence of inputs minimizing the quadratic performance index is proposed.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Controllability and Minimum Energy Control Problem of Infinite Dimensional Fractional Discrete-Time Systems with Delays\",\"authors\":\"J. Klamka\",\"doi\":\"10.1109/ACIIDS.2009.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum energy control problem of infinite-dimensional fractional-discrete time linear systems both without delays and with delays in control is discussed. Using methods taken from functional analysis necessary and sufficient conditions for the exact controllablity of the system are established. Next, assuming exact controllability analytical solution of the minimum energy control of the infinite-dimensional fractional discrete-time systems is given. A procedure for computation of the optimal sequence of inputs minimizing the quadratic performance index is proposed.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

讨论了无时滞和有时滞的无穷维分数阶离散线性系统的最小能量控制问题。采用功能分析的方法,确定了系统精确可控的充分必要条件。其次,在假设精确可控的前提下,给出了无限维分数阶离散系统最小能量控制的解析解。提出了使二次型性能指标最小化的最优输入序列的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllability and Minimum Energy Control Problem of Infinite Dimensional Fractional Discrete-Time Systems with Delays
The minimum energy control problem of infinite-dimensional fractional-discrete time linear systems both without delays and with delays in control is discussed. Using methods taken from functional analysis necessary and sufficient conditions for the exact controllablity of the system are established. Next, assuming exact controllability analytical solution of the minimum energy control of the infinite-dimensional fractional discrete-time systems is given. A procedure for computation of the optimal sequence of inputs minimizing the quadratic performance index is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信