基于模糊概念格的分类器

Wen Zhou, Zongtian Liu, Yan Zhao, Yu Zheng, Dong Xu, W. Liu, Ying Zhu
{"title":"基于模糊概念格的分类器","authors":"Wen Zhou, Zongtian Liu, Yan Zhao, Yu Zheng, Dong Xu, W. Liu, Ying Zhu","doi":"10.1109/FSKD.2007.322","DOIUrl":null,"url":null,"abstract":"The large collection of formal concepts can be a hedge of the application of FCA. Development of methods which help to overcome the problem of the huge size of concept lattice is thus an important task. This paper proposes clustering-based reduction algorithm for reducing the size of fuzzy concept lattices. At the end, experiment results show that the compression rate of the concept lattice and classifier is remarkable, while it preserves the accuracy of classification of concept lattice.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"13 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Concept Lattice Based Classifier\",\"authors\":\"Wen Zhou, Zongtian Liu, Yan Zhao, Yu Zheng, Dong Xu, W. Liu, Ying Zhu\",\"doi\":\"10.1109/FSKD.2007.322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large collection of formal concepts can be a hedge of the application of FCA. Development of methods which help to overcome the problem of the huge size of concept lattice is thus an important task. This paper proposes clustering-based reduction algorithm for reducing the size of fuzzy concept lattices. At the end, experiment results show that the compression rate of the concept lattice and classifier is remarkable, while it preserves the accuracy of classification of concept lattice.\",\"PeriodicalId\":201883,\"journal\":{\"name\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"volume\":\"13 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2007.322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的形式概念可以成为FCA应用的一个障碍。因此,开发有助于克服概念格的巨大尺寸问题的方法是一项重要的任务。提出了一种基于聚类的模糊概念格约简算法。最后,实验结果表明,概念格和分类器的压缩率显著提高,同时保持了概念格分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Concept Lattice Based Classifier
The large collection of formal concepts can be a hedge of the application of FCA. Development of methods which help to overcome the problem of the huge size of concept lattice is thus an important task. This paper proposes clustering-based reduction algorithm for reducing the size of fuzzy concept lattices. At the end, experiment results show that the compression rate of the concept lattice and classifier is remarkable, while it preserves the accuracy of classification of concept lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信