卷积神经网络在CCTV图像可见性估计中的应用

A. Giyenko, A. Palvanov, Younglm Cho
{"title":"卷积神经网络在CCTV图像可见性估计中的应用","authors":"A. Giyenko, A. Palvanov, Younglm Cho","doi":"10.1109/ICOIN.2018.8343247","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the possibility of application of a Convolutional Neural Network for visual atmospheric visibility estimation. A system utilizing such a neural network can greatly benefit a smart city by providing real time localized visibility data across all highways and roads by utilizing a dense network of traffic and security cameras that exist in most developed urban areas. To achieve this, we implemented a Convolutional Neural Network with 3 convolution layers and trained it on a data set taken from CCTV cameras in South Korea. This approach allowed us achieve accuracy above 84%. In the paper we describe the network structure and training process, as well as some final thoughts on the next steps in our research.","PeriodicalId":228799,"journal":{"name":"2018 International Conference on Information Networking (ICOIN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Application of convolutional neural networks for visibility estimation of CCTV images\",\"authors\":\"A. Giyenko, A. Palvanov, Younglm Cho\",\"doi\":\"10.1109/ICOIN.2018.8343247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the possibility of application of a Convolutional Neural Network for visual atmospheric visibility estimation. A system utilizing such a neural network can greatly benefit a smart city by providing real time localized visibility data across all highways and roads by utilizing a dense network of traffic and security cameras that exist in most developed urban areas. To achieve this, we implemented a Convolutional Neural Network with 3 convolution layers and trained it on a data set taken from CCTV cameras in South Korea. This approach allowed us achieve accuracy above 84%. In the paper we describe the network structure and training process, as well as some final thoughts on the next steps in our research.\",\"PeriodicalId\":228799,\"journal\":{\"name\":\"2018 International Conference on Information Networking (ICOIN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2018.8343247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2018.8343247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文讨论了卷积神经网络在大气视觉能见度估计中的应用可能性。利用这种神经网络的系统可以通过利用大多数发达城市地区存在的密集交通和安全摄像头网络,提供所有高速公路和道路的实时本地化可见性数据,从而极大地造福于智慧城市。为了实现这一点,我们实现了一个具有3个卷积层的卷积神经网络,并在韩国闭路电视摄像机的数据集上对其进行了训练。这种方法使我们的准确率达到84%以上。在本文中,我们描述了网络结构和训练过程,以及对我们下一步研究的一些最后的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of convolutional neural networks for visibility estimation of CCTV images
In this paper we discuss the possibility of application of a Convolutional Neural Network for visual atmospheric visibility estimation. A system utilizing such a neural network can greatly benefit a smart city by providing real time localized visibility data across all highways and roads by utilizing a dense network of traffic and security cameras that exist in most developed urban areas. To achieve this, we implemented a Convolutional Neural Network with 3 convolution layers and trained it on a data set taken from CCTV cameras in South Korea. This approach allowed us achieve accuracy above 84%. In the paper we describe the network structure and training process, as well as some final thoughts on the next steps in our research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信