利用社交媒体数据融合促进机器学习媒体研究中的学生进化

Najla M. .., Walaa .., M. Balbaa
{"title":"利用社交媒体数据融合促进机器学习媒体研究中的学生进化","authors":"Najla M. .., Walaa .., M. Balbaa","doi":"10.54216/fpa.120215","DOIUrl":null,"url":null,"abstract":"In the realm of media studies, understanding student evolution is a crucial aspect for educators and researchers. However, traditional research methods often struggle to capture the dynamic nature of media consumption and the intricate interactions between individuals and media content. To address this challenge, this paper focuses on leveraging social media data fusion and machine learning techniques to enhance the comprehension of student evolution. By integrating data from diverse social media sources and employing the CATBoost algorithm with the Greedy Target-based Statistics (Greedy TBS) technique, we aim to predict student outcomes based on a comprehensive set of attributes. The results showcase the superior performance of CATBoost in accurately capturing the complexities of student evolution, surpassing other machine learning algorithms. The findings hold immense significance for educators, empowering them with valuable insights into students' behaviors, preferences, and performance.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Social Media Data Fusion for Enhanced Student Evolution in Media Studies using Machine Learning\",\"authors\":\"Najla M. .., Walaa .., M. Balbaa\",\"doi\":\"10.54216/fpa.120215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of media studies, understanding student evolution is a crucial aspect for educators and researchers. However, traditional research methods often struggle to capture the dynamic nature of media consumption and the intricate interactions between individuals and media content. To address this challenge, this paper focuses on leveraging social media data fusion and machine learning techniques to enhance the comprehension of student evolution. By integrating data from diverse social media sources and employing the CATBoost algorithm with the Greedy Target-based Statistics (Greedy TBS) technique, we aim to predict student outcomes based on a comprehensive set of attributes. The results showcase the superior performance of CATBoost in accurately capturing the complexities of student evolution, surpassing other machine learning algorithms. The findings hold immense significance for educators, empowering them with valuable insights into students' behaviors, preferences, and performance.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.120215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.120215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在媒体研究领域,理解学生的进化对教育工作者和研究人员来说是一个至关重要的方面。然而,传统的研究方法往往难以捕捉媒体消费的动态本质,以及个人与媒体内容之间错综复杂的相互作用。为了应对这一挑战,本文侧重于利用社交媒体数据融合和机器学习技术来增强对学生进化的理解。通过整合来自不同社交媒体来源的数据,并使用CATBoost算法和贪婪目标统计(Greedy TBS)技术,我们的目标是基于一组综合属性来预测学生的成绩。结果显示,CATBoost在准确捕捉学生进化的复杂性方面表现优异,超越了其他机器学习算法。这些发现对教育工作者来说意义重大,使他们对学生的行为、偏好和表现有了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Social Media Data Fusion for Enhanced Student Evolution in Media Studies using Machine Learning
In the realm of media studies, understanding student evolution is a crucial aspect for educators and researchers. However, traditional research methods often struggle to capture the dynamic nature of media consumption and the intricate interactions between individuals and media content. To address this challenge, this paper focuses on leveraging social media data fusion and machine learning techniques to enhance the comprehension of student evolution. By integrating data from diverse social media sources and employing the CATBoost algorithm with the Greedy Target-based Statistics (Greedy TBS) technique, we aim to predict student outcomes based on a comprehensive set of attributes. The results showcase the superior performance of CATBoost in accurately capturing the complexities of student evolution, surpassing other machine learning algorithms. The findings hold immense significance for educators, empowering them with valuable insights into students' behaviors, preferences, and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信