基于深度学习的驾驶员面部情感识别

G. K. Sahoo, S. Das, Poonam Singh
{"title":"基于深度学习的驾驶员面部情感识别","authors":"G. K. Sahoo, S. Das, Poonam Singh","doi":"10.1109/NCC55593.2022.9806751","DOIUrl":null,"url":null,"abstract":"This study proposes deep learning-based facial emotion recognition (FER) for driver health care. The FER system will monitor the emotional state of the driver's face to identify the driver's negligence and provide immediate assistance for safety. This work uses a transfer learning-based framework for FER which will help in developing an in-vehicle driver assistance system. It implements transfer learning SqueezeNet 1.1 to classify different facial expressions. Data preprocessing techniques such as image resizing and data augmentation have been employed to improve performance. The experimental study uses static facial expressions publicly available on several benchmark databases such as CK+, KDEF, FER2013, and KMU-FED to evaluate the model's performance. The performance comparison only showed superiority over state-of-the-art technologies in the case of the KMU-FED database, i.e., maximum accuracy of 95.83 %, and the results showed comparable performance to the rest of the benchmark databases.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning-Based Facial Emotion Recognition for Driver Healthcare\",\"authors\":\"G. K. Sahoo, S. Das, Poonam Singh\",\"doi\":\"10.1109/NCC55593.2022.9806751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes deep learning-based facial emotion recognition (FER) for driver health care. The FER system will monitor the emotional state of the driver's face to identify the driver's negligence and provide immediate assistance for safety. This work uses a transfer learning-based framework for FER which will help in developing an in-vehicle driver assistance system. It implements transfer learning SqueezeNet 1.1 to classify different facial expressions. Data preprocessing techniques such as image resizing and data augmentation have been employed to improve performance. The experimental study uses static facial expressions publicly available on several benchmark databases such as CK+, KDEF, FER2013, and KMU-FED to evaluate the model's performance. The performance comparison only showed superiority over state-of-the-art technologies in the case of the KMU-FED database, i.e., maximum accuracy of 95.83 %, and the results showed comparable performance to the rest of the benchmark databases.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出基于深度学习的面部情绪识别(FER)用于驾驶员健康护理。该系统将监测驾驶员面部的情绪状态,以识别驾驶员的疏忽,并为安全提供即时援助。这项工作使用了基于迁移学习的FER框架,这将有助于开发车载驾驶员辅助系统。实现了迁移学习SqueezeNet 1.1对不同的面部表情进行分类。数据预处理技术,如图像大小调整和数据增强已被用于提高性能。实验研究使用CK+、KDEF、FER2013和KMU-FED等几个公开的基准数据库上的静态面部表情来评估模型的性能。性能比较仅在KMU-FED数据库的情况下显示出优于最先进技术的优势,即最高准确率为95.83%,结果显示与其他基准数据库的性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Facial Emotion Recognition for Driver Healthcare
This study proposes deep learning-based facial emotion recognition (FER) for driver health care. The FER system will monitor the emotional state of the driver's face to identify the driver's negligence and provide immediate assistance for safety. This work uses a transfer learning-based framework for FER which will help in developing an in-vehicle driver assistance system. It implements transfer learning SqueezeNet 1.1 to classify different facial expressions. Data preprocessing techniques such as image resizing and data augmentation have been employed to improve performance. The experimental study uses static facial expressions publicly available on several benchmark databases such as CK+, KDEF, FER2013, and KMU-FED to evaluate the model's performance. The performance comparison only showed superiority over state-of-the-art technologies in the case of the KMU-FED database, i.e., maximum accuracy of 95.83 %, and the results showed comparable performance to the rest of the benchmark databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信