符号数据在神经模糊分类中的应用

D. Nauck
{"title":"符号数据在神经模糊分类中的应用","authors":"D. Nauck","doi":"10.1109/NAFIPS.1999.781751","DOIUrl":null,"url":null,"abstract":"In real world data sets, we often have to deal with different kinds of variables. The data can be for example categorical or metric. Data mining methods can often deal with only one kind of data. Even when fuzzy systems are applied-which are not dependent on the scales of variables-usually only metric data is considered. We propose a learning algorithm that creates mixed fuzzy rules-fuzzy rules that use categorical and metric variables.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Using symbolic data in neuro-fuzzy classification\",\"authors\":\"D. Nauck\",\"doi\":\"10.1109/NAFIPS.1999.781751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real world data sets, we often have to deal with different kinds of variables. The data can be for example categorical or metric. Data mining methods can often deal with only one kind of data. Even when fuzzy systems are applied-which are not dependent on the scales of variables-usually only metric data is considered. We propose a learning algorithm that creates mixed fuzzy rules-fuzzy rules that use categorical and metric variables.\",\"PeriodicalId\":335957,\"journal\":{\"name\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.1999.781751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在现实世界的数据集中,我们经常需要处理不同类型的变量。例如,数据可以是分类的或度量的。数据挖掘方法通常只能处理一种数据。即使应用模糊系统(不依赖于变量的尺度),通常也只考虑度量数据。我们提出了一种创建混合模糊规则的学习算法-使用分类和度量变量的模糊规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using symbolic data in neuro-fuzzy classification
In real world data sets, we often have to deal with different kinds of variables. The data can be for example categorical or metric. Data mining methods can often deal with only one kind of data. Even when fuzzy systems are applied-which are not dependent on the scales of variables-usually only metric data is considered. We propose a learning algorithm that creates mixed fuzzy rules-fuzzy rules that use categorical and metric variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信