基于模型的特征级意见挖掘学习方法比较

Luole Qi, Li Chen
{"title":"基于模型的特征级意见挖掘学习方法比较","authors":"Luole Qi, Li Chen","doi":"10.1109/WI-IAT.2011.64","DOIUrl":null,"url":null,"abstract":"The tasks of feature-level opinion mining usually include the extraction of product entities from product reviews, the identification of opinion words that are associated with the entities, and the determining of these opinions' polarities (e.g., positive, negative, or neutral). In recent years, several approaches have been proposed such as rule-based and statistical methods on this subject, but few attentions have been paid to applying more discriminative learning models to achieve the goal. On the other hand, little work has evaluated their algorithms' performance for identifying intensifiers, entity phrases and infrequent entities. In this paper, we in particular adopt the Conditional Random Fields (CRFs) model to perform the opinion mining tasks. Relative to related approaches, we have not only highlighted the algorithm's ability in mining intensifiers, phrases and infrequent entities, but also integrated more elements in the model so as to optimize its training and decoding process. Our method was compared to the lexicalized Hidden Markov Model (L-HMMs) based opinion mining method in the experiment, which proves its significantly better accuracy from several aspects.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Comparison of Model-Based Learning Methods for Feature-Level Opinion Mining\",\"authors\":\"Luole Qi, Li Chen\",\"doi\":\"10.1109/WI-IAT.2011.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tasks of feature-level opinion mining usually include the extraction of product entities from product reviews, the identification of opinion words that are associated with the entities, and the determining of these opinions' polarities (e.g., positive, negative, or neutral). In recent years, several approaches have been proposed such as rule-based and statistical methods on this subject, but few attentions have been paid to applying more discriminative learning models to achieve the goal. On the other hand, little work has evaluated their algorithms' performance for identifying intensifiers, entity phrases and infrequent entities. In this paper, we in particular adopt the Conditional Random Fields (CRFs) model to perform the opinion mining tasks. Relative to related approaches, we have not only highlighted the algorithm's ability in mining intensifiers, phrases and infrequent entities, but also integrated more elements in the model so as to optimize its training and decoding process. Our method was compared to the lexicalized Hidden Markov Model (L-HMMs) based opinion mining method in the experiment, which proves its significantly better accuracy from several aspects.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

特征级意见挖掘的任务通常包括从产品评论中提取产品实体,识别与实体相关的意见词,以及确定这些意见的极性(如积极、消极或中立)。近年来,人们提出了基于规则的学习方法和基于统计的学习方法,但很少有人关注如何使用更具判别性的学习模型来实现这一目标。另一方面,很少有研究评估他们的算法在识别强化词、实体短语和不常见实体方面的性能。在本文中,我们特别采用条件随机场(CRFs)模型来执行意见挖掘任务。相对于相关方法,我们不仅突出了算法在强化词、短语和非频繁实体挖掘方面的能力,而且在模型中集成了更多的元素,从而优化了模型的训练和解码过程。在实验中,将该方法与基于词汇化隐马尔可夫模型(l - hmm)的意见挖掘方法进行了比较,从几个方面证明了该方法的准确率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Model-Based Learning Methods for Feature-Level Opinion Mining
The tasks of feature-level opinion mining usually include the extraction of product entities from product reviews, the identification of opinion words that are associated with the entities, and the determining of these opinions' polarities (e.g., positive, negative, or neutral). In recent years, several approaches have been proposed such as rule-based and statistical methods on this subject, but few attentions have been paid to applying more discriminative learning models to achieve the goal. On the other hand, little work has evaluated their algorithms' performance for identifying intensifiers, entity phrases and infrequent entities. In this paper, we in particular adopt the Conditional Random Fields (CRFs) model to perform the opinion mining tasks. Relative to related approaches, we have not only highlighted the algorithm's ability in mining intensifiers, phrases and infrequent entities, but also integrated more elements in the model so as to optimize its training and decoding process. Our method was compared to the lexicalized Hidden Markov Model (L-HMMs) based opinion mining method in the experiment, which proves its significantly better accuracy from several aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信